Efficacy of Indirect Enzyme Immunosorbent Assay and Passive Haemagglutination Test for the Diagnosis of Bovine Herpes Virus -I (BHV-1) Infection

M. Saravanajayam¹, K. Kumarana² and A. Balasubramaniam¹

¹Veterinary University Training and Research Centre, Perambalur, Tamil Nadu, INDIA
²Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, INDIA

*Corresponding author: M Saravanajayam; Email: sarva78@gmail.com

Received: 20 January, 2016 Accepted: 24 February, 2016

ABSTRACT

A total of 255 sera were collected from unvaccinated crossbred (174) and indigenous (81) cattle and buffalo having history of respiratory and reproductive disorders. All the sera sample were subjected to indirect ELISA and passive haemagglutination (PHA) test for the detection of BHV-1 antibodies. Indirect ELISA and PHA test detected significantly (p<0.01) varied prevalence of BHV-1 antibody i.e. 60.39 % and 35.69%, respectively. The sensitivity and specificity of PHA test in comparison with indirect ELISA was 55.91% and 94.06%, respectively. Moderate agreement (kappa = 0.442) was noticed between ELISA and PHA for the diagnosis of BHV-1 antibodies. Significantly (p<0.01) higher prevalence of BHV-1 antibodies was observed in crossbred (70.11%) as compared to indigenous cattle and buffalo (46.91%). Hence, it is be concluded from present investigation that the indirect ELISA could be reliable and sensitive test than PHA test to screen BHV-1 antibody.

Keywords: Bovine herpes virus-I, ELISA, PHA, sensitivity, specificity

Bovine herpes virus -I (BHV-I), a member of family Herpesviridae is an economically important pathogen of cattle. It causes a wide range of disease manifestations including respiratory disease and abortion, with worldwide distribution (Cowley et al. 2011). The economic losses are due to storms of abortion in pregnant animals, loss of milk production, loss of draught power, infertility and immunosuppression.

All ages and breeds of cattle are susceptible to BHV-1 infection (Donkersgoed and Babu, 1991). The transmission of BHV-1 infection to the non-infected cattle mainly occurs through getting contact with infected animals, aerosol route and insemination with virus-contaminated semen from BHV-1 infected bulls (Ampe et al. 2012).

Indirect enzyme linked immunosorbent assay (ELISA) and passive haemagglutination (PHA), both the tests can be used for the assessment of BHV-1 antibodies among the cattle population (Satyanarayana and Suri Babu, 1987; Roshithkari et al. 2012). Both the tests have their own limitations and advantages. However, there is no previous report on comparison of indirect ELISA and PHA test in the diagnosis of BHV-1 antibodies. Also, vaccination for BHV-1 in cattle and buffalo is generally not practiced in Tamil Nadu, hence regular screening of cattle and buffalo is required for the presence of BHV-1 antibodies. Hence, the present study was designed with two objectives, firstly to evaluate the efficacy and relationship between indirect ELISA and PHA test for the detection of BHV-1 antibodies and secondly to determine the seroprevalence of BHV-1 among unvaccinated crossbred and indigenous cattle and buffalo population.

MATERIALS AND METHODS

Location of study

Present study was conducted in the cattle and buffalo brought at Madras Veterinary College hospital and organized farms of Tamil Nadu, India. The cell culture and antigen preparation work were carried out at Department
of Animal Biotechnology and the diagnostic tests were performed at Department of Veterinary Preventive Medicine, Madras Veterinary College, Chennai.

Collection of samples
Blood samples were collected from 255 unvaccinated cattle and buffalo of different breeds (Jersey crossbred, Holstein Friesian crossbred, Murrah buffalo, Surti buffalo and nondescript bovines) with history of respiratory and reproductive disorders. Sera were separated by centrifuging at 3000 rpm for 10 min, and inactivated at 56°C for 30 min. in water bath. Serum samples were then preserved in sterile labeled vials by adding 0.1% sodium azide and stored at -20°C till further use.

Reference Sera
The OIE standard IBR-EU1 serum (Strong positive) and IBR-EU3 serum (negative) from bovine origin were received from Central Institute for Animal Disease Control Lelystad, The Netherlands.

Preparation of BHV-1 antigen
The BJF-OCS-W strain of BHV-1 was used as a standard virus for antigen preparation. The BHV-1 was propagated in Madin-Darby Bovine Kidney cell line for four serial passages and a titre of 10^6.6 TCID_50 per 50 μl of the BHV-1 was used as reference antigen. TCID_50 was calculated as per Reed and Muench (1938) method: Optimum protein concentration of BHV-1 tissue culture antigen (0.6 g/100 ml) was estimated as per the method of Lowry et al. (1951) and was used in serological diagnosis.

Indirect Enzyme linked immunosorbent assay (ELISA)
ELISA was performed as per the protocol of Florent and Denmaneef (1986). The optimum dilutions of coating antigen, sera and antihogme IgG – HRP conjugate were standardized by the checker board titration as 1:50, 1:10 and 1:50, respectively. The mean optical density (OD) value twice and above the negative OD value was taken as positive.

Passive Haemagglutination (PHA) test
Ingredients for PHA were prepared as per the protocol described by Singh et al. (2001). 100 μl of each serum sample was adsorbed by equal volume of glutaraldehyde fixed sheep erythrocytes at 37°C for one hr to avoid non specific reaction. After complete settlement of erythrocytes, the supernatant sera were utilized for the test. Further, PHA was performed as described by Shimizu et al. (1972) using “U” bottom microplates (Laxbro, India). The titre was expressed as the reciprocal of the highest dilution of serum giving 100% agglutination. The titre of 1.8 and above was considered as positive.

*No significant difference in BHV-1 antibodies prevalence between cases from Madras Veterinary College Hospital and organized farms in Tamil Nadu (p > 0.05)

<table>
<thead>
<tr>
<th>Name of the Place</th>
<th>No. of sera tested</th>
<th>Total positive</th>
<th>Average OD value</th>
<th>Prevalence rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madras Veterinary College Hospital</td>
<td>154</td>
<td>96</td>
<td>0.237</td>
<td>62.34*</td>
</tr>
<tr>
<td>Organized farms in Tamil Nadu</td>
<td>101</td>
<td>58</td>
<td>0.31</td>
<td>57.43*</td>
</tr>
<tr>
<td>Total</td>
<td>255</td>
<td>154</td>
<td>0.274</td>
<td>60.39</td>
</tr>
</tbody>
</table>

Statistical analysis
The seroprevalence of BHV-1, sensitivity and specificity of ELISA and PHA and agreement between PHA and ELISA tests were assessed statistically using chi-square test as per the procedure of Snedecor and Cochran (1967).

RESULTS AND DISCUSSION
Out of 255 sera sample, 154 (60.39%) samples were found positive for BHV-1 antibodies by ELISA (Table 1) whereas only 35.69% samples were detected positive by PHA test (Table 2) as ELISA could find even low level of BHV-1 antibodies in test sera (Shivani et al. 2011; Trangadia et al. 2012). The present study is comparable with the earlier reports on BHV-1 antibody prevalence (56%) in Iranian non-vaccinated cattle population (Sadri, 2012) and 64.72% prevalence in Andhra Pradesh, India (Scari Babu et al. 1984). In contrast, Trangadia et al. (2012)
Diagnosis of BHV-1 infection

Table 2. Prevalence of BHV-1 antibody titres by PHA

<table>
<thead>
<tr>
<th>Name of the place</th>
<th>No. of sera tested</th>
<th>PHA titre</th>
<th>Prevalence rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madras Veterinary College Hospital</td>
<td>154</td>
<td>101 7 19 6 10 5 3 2 1</td>
<td>53 34.42*</td>
</tr>
<tr>
<td>Organized farms in Tamil Nadu</td>
<td>101</td>
<td>63 4 6 6 9 10 1 2 —</td>
<td>38 37.62*</td>
</tr>
<tr>
<td>Total</td>
<td>255</td>
<td>164 11 25 12 19 15 4 4 1</td>
<td>91 35.69</td>
</tr>
</tbody>
</table>

*No significant difference in BHV-1 antibodies prevalence between cases from Madras Veterinary College Hospital and organized farms in Tamil Nadu (p>0.05)

reported low prevalence of BHV-1 infection (23.94%) in Gujarat.

Table 3. Breed wise prevalence of BHV-1 antibodies in cattle and buffalo

<table>
<thead>
<tr>
<th>Breed</th>
<th>No. of sera tested</th>
<th>Total positive</th>
<th>Overall % positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossbred</td>
<td>Jersey</td>
<td>127 90</td>
<td>70.87</td>
</tr>
<tr>
<td></td>
<td>Holstein Friesian</td>
<td>47 32</td>
<td>68.09 70.11*</td>
</tr>
<tr>
<td></td>
<td>Murrah Buffalo</td>
<td>34 17</td>
<td>50.00</td>
</tr>
<tr>
<td>Indigenous</td>
<td>Surti Buffalo</td>
<td>20 11</td>
<td>55.00</td>
</tr>
<tr>
<td></td>
<td>Non-descript</td>
<td>27 10</td>
<td>37.04 46.91*</td>
</tr>
</tbody>
</table>

*The prevalence rates are significantly higher in crossbred animals than indigenous breeds (p < 0.01)

The breed wise seroprevalence of BHV-1 antibodies using ELISA were 70.11% and 46.91% in crossbred (Jersey and Holstein Friesian Crossbred cows) and indigenous (Murrah buffalo, Surti buffalo and non-descript) cattle and buffalo, respectively. The prevalence was significantly higher in crossbred cattle than indigenous one (p<0.01) as illustrated in Table 3. In present investigation, crossbred cattle showed higher prevalence of BHV-1 antibodies than indigenous cattle which is in agreement with findings of Satyanarayana and Suri Babu (1987). Less susceptibility of indigenous cattle and buffalo might be due their inherent resistance to BHV-1 infection.

The sensitivity and specificity of PHA in comparison with standard ELISA was 55.19% and 94.06%, respectively. Likewise, Cowley et al. (2011) reported 100% sensitivity and 97% specificity of indirect ELISA. In congruence with present observation, Edwards et al. (1986) also reported PHA as less reliable and sensitive than indirect ELISA since PHA failed to detect BHV-1 antibodies in some low titre sera (Solsona et al. 1980). The moderate

Table 4. Comparison of PHA with ELISA for BHV-1 antibody detection

<table>
<thead>
<tr>
<th>No. of sera tested</th>
<th>No. of positive sera by PHA</th>
<th>ELISA positive and PHA positive</th>
<th>ELISA positive and PHA negative</th>
<th>ELISA negative and PHA positive</th>
<th>ELISA negative and PHA negative</th>
<th>Sensitivity (%) of PHA</th>
<th>Specificity (%) of PHA</th>
<th>Agreement (kappa statistic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>91*</td>
<td>85*</td>
<td>69*</td>
<td>6</td>
<td>95</td>
<td>55.19</td>
<td>94.06</td>
<td>0.442</td>
</tr>
</tbody>
</table>

*Significant difference was found between PHA and ELISA for detecting BHV-1 antibodies (p<0.01).

agreement (kappa = 0.442) was estimated between ELISA and PHA for detecting the BHV-1 antibodies using Kappa statistics (Table 4). On contrary, Beccaria et al. (1982) observed good agreement between ELISA and serum neutralization test for the detection of BHV-1 antibodies.

Passive haemagglutination test detected BHV-1 antibody titre ranging from 8 to 1024. Likewise, a titre of 1:8 and above was reported by Singh et al. (2001). In present study, six serum sample negative to ELISA were detected positive by PHA test which is supported with report of Gonzalez et al. (1985) as PHA test can detect different classes of antibodies.

Based on findings of present study, it is inferred that indirect ELISA could be considered as standard test to detect the BHV-1 antibodies.

ACKNOWLEDGEMENTS

The author is thankful to Dr. J.A. Kramps, Central Institute for Animal Disease Control Lelystad, The Netherlands for the supply of OIE international standard sera to carry out this study.

REFERENCES

