CONTENTS

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>1.1 Statement of problem</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Objectives of the study</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.3 Significance of the problem</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.4 Assumptions of the study</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.5 Limitations of the study</td>
<td>7</td>
</tr>
<tr>
<td>II</td>
<td>REVIEW OF LITERATURE</td>
<td>8-36</td>
</tr>
<tr>
<td></td>
<td>2.1 Origin of groundnut</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2 Distribution, area and production</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.3 Uses of groundnut</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.4 Production constraints</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.5 Stem rot disease in groundnut</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.6 Stem rot management</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.7 Strategies to control plant diseases</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.8 Trichoderma as a biocontrol agent aginst S. rolfsii causing stem rot in groundnut</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.9 Trichoderma as a fungicides and abiotic stress tolerant</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.10 Protoplast fusion of Trichoderma</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.11 Biocontrol mechanism of Trichoderma to inhibit fungal pathogen</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.12 Regulatory small RNA sequencing and their expression studies in fungi</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.13 Green synthesis and characterization of silver nanoparticles for biocontrol activity</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2.14 In vitro bioefficacy of nanoformulations and its pathogen degradation mechanism</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2.15 In vivo bioefficacy of live Trichoderma and green nanoformulations to control S. rolfsii infection of groundnut in field condition</td>
<td>34</td>
</tr>
<tr>
<td>III</td>
<td>MATERIALS AND METHODS</td>
<td>37-88</td>
</tr>
<tr>
<td></td>
<td>3.1 Experimental site</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>3.2 Experimental materials</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>3.3 Glass wares and plastic wares</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>3.4 Chemicals and consumables</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>3.5 Major equipments and instruments used in the experiment</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>3.6 Experimental details</td>
<td>43</td>
</tr>
</tbody>
</table>
3.7 **Experiment-I** Assortment of *Trichoderma* antagonist for inhibition of *S. rolfsii* and multi tolerance with fungicides and abiotic stresses

3.7.1 Sources and maintenance of microbes 46

3.7.2 Macro and micro morphological characterization 48

3.7.3 Screening of Best Antagonist and Multi tolerant Strain 49

3.7.4 Molecular diversity and gene specific SSR marker analysis 52

3.8 **Experiment-II** Protoplast fusion between best antagonist and multi stress tolerance *Trichoderma* strain

3.8.1 Protoplast formation 59

3.8.2 Examination of protoplast 59

3.8.3 Protoplast fusion 59

3.8.4 Regeneration of fused protoplasts and fusants stability 60

3.8.5 Screening of fusants for fungicides and abiotic stress tolerance 61

3.8.6 Screening of fusants for antagonistic activity 61

3.8.7 Molecular diversity/heterozygosity and conformation of fusants derived from their parents 62

3.9 **Experiment-III** Antifungal characterization of derived fusants and parental strains

3.9.1 Preparation of fungal cell wall 63

3.9.2 Extraction of lytic enzymes and defense related substances 63

3.9.3 Chitinase activity (EC 3.2.1.14) 64

3.9.4 β-1, 3 glucanase activity (EC 3.2.1.39) 64

3.9.5 Protease activity (EC 3.4.21.4) 64

3.9.6 Cellulase activity (EC 3.2.1.21) 64

3.9.7 Protein assay 64

3.9.8 Salicylic acid 65

3.9.9 Total Phenol 65

3.9.10 Extraction, separation and identification of extracellular bioactive constituents using GCMS 66

3.10 **Experiment-IV** micro RNA sequencing, identification and qRT-PCR expression profile of regulatory gene for biocontrol potential of fusant and parental strains 67-74
3.10.1 Micro RNA profiling of parental *Trichoderma* strains and fusants

3.10.2 Intracellular metabolomic study

3.12 **Experiment-V** Nanoformulations based bioefficacy of best *Trichoderma* fusant to manage stem rot in groundnut

3.11.1 Synthesis of green nanoparticles

3.11.2 Characterization of silver nanoparticles

3.11.3 *In vitro* bioefficacy and mechanism of nanoformulations to degrade *S. rolfsii* mycelia

3.11.4 *In vivo* bioefficacy of best *Trichoderma* fusant and their nanoformulations to control *S. rolfsii* infection in field

IV RESULTS AND DISCUSSION

4.1 **Experiment-I** Assortment of *Trichoderma* antagonist for inhibition of *S. rolfsii* and multi tolerance with fungicides and abiotic stresses

4.1.1 Macro and micro morphological characteristics of antagonists and test pathogen

4.1.2 Screening of best antagonist and multi tolerant strain

4.2 **Experiment-II** Protoplast fusion between best antagonist and multi stress tolerance *Trichoderma* strain

4.2.1 Isolation of protoplasts and development of fusants

4.2.2 Regeneration of fused protoplasts and fusants stability

4.2.3 Morphological descriptors of fusants

4.2.4 Screening for fungicide and abiotic stress tolerance

4.2.5 Antagonistic activity of *Trichoderma* fusants and parental strains against *S. rolfsii*

4.2.6 Scanning micrograph of best *Trichoderma* fusant and parental strains

4.2.7 Molecular heterozygosity and relationship among fusants and their parents

4.2.8 Gene specific conformation of fusants compared to their parents

4.3 **Experiment-III** Antifungal characterization of derived fusants and parental strains

4.3.1 Chitinase activity
4.3.2 β -1, 3 glucanase activity 128
4.3.3 Protease activity 129
4.3.4 Cellulase activity 129
4.3.5 Salicylic acid 129
4.3.6 Total Phenol 130
4.3.7 Correlation matrix between percent growth inhibition of fungal pathogen and production of cell wall degrading enzymes 131
4.3.8 Extra cellular metabolomic study of potent fusants and parental Trichoderma strains in presence of pathogen cellwall using GC–MS 132

4.4 Experiment-IV micro RNA sequencing, identification and qRT-PCR expression profile of regulatory gene for biocontrol potential of fusant and parental strains 184-258
4.4.1 Micro RNA profiling of best and least fusants and their parental strains 184
4.4.2 Intra cellular metabolomic study 220

4.5 Experiment-V Nanoformulations based bioefficacy of best Trichoderma fusant to manage stem rot in groundnut 259-288
4.5.1 Characterization of green synthesized silver nanoparticles 259
4.5.2 In vitro bioefficacy and mechanism of nanoformulations to degrade S. rolfsii mycelia 271
4.5.3 In vivo bioefficacy of best Trichoderma fusant and their nanoformulations to control S. rolfsii infection in field 283

V SUMMARY AND CONCLUSIONS 289-297
5.1 Assortment of Trichoderma antagonist for inhibition of S. rolfsii and multi tolerance with fungicides and abiotic stresses 290
5.2 Protoplast fusion between best antagonist and multi stress tolerance Trichoderma strain 291
5.3 Antifungal characterization of derived fusants and parental strains 292
5.4 micro RNA sequencing, identification and qRT-PCR expression profile of regulatory gene for biocontrol potential of fusant and parental strains 293
5.5 Nanoformulations based bioefficacy of best Trichoderma fusant to manage stem rot in groundnut 295

BIBLIOGRAPHY i-xx
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Area, Production and Productivity of Groundnut in India (State of Indian Agriculture, 2012-13)</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Major crops with symptoms of diseases caused by S. rolfsii</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>List of chemicals used in the present study</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>List of instruments used in the present study</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>The list of Trichoderma isolates and test pathogen used in the study</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>List of gene specific SSR markers and PCR amplification conditions for Trichoderma fusants</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>Rainfall, relative humidity, air temperature and soil temperature at different stages of disease development in groundnut</td>
<td>83</td>
</tr>
<tr>
<td>3.6</td>
<td>The treatments details of in vivo biocontrol experiment of stem rot in ground nut caused by S. rolfsii</td>
<td>86</td>
</tr>
<tr>
<td>4.1</td>
<td>Macro and micro morphological descriptors for the characterization of Trichoderma strains in PDA media</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Inhibition coefficient obtained from interaction assays between twenty Trichoderma strains and test pathogen S. rolfsii</td>
<td>95</td>
</tr>
<tr>
<td>4.3</td>
<td>Polymorphism obtained with different SSR primers generated from twenty Trichoderma strains and S. rolfsii</td>
<td>104</td>
</tr>
<tr>
<td>4.4</td>
<td>Unique markers amplified across twenty Trichoderma strains and S. rolfsii using gene specific SSR</td>
<td>105</td>
</tr>
<tr>
<td>4.5</td>
<td>Inhibition coefficient of parental Trichoderma strains and their protoplast fusants against phytopathogen S. rolfsii</td>
<td>116</td>
</tr>
<tr>
<td>4.6</td>
<td>Statistic of genetic variation for Trichoderma parents and their fusants</td>
<td>120</td>
</tr>
<tr>
<td>4.7</td>
<td>F statistics and gene flow analysis of Trichoderma fusants and their parents</td>
<td>123</td>
</tr>
<tr>
<td>4.8</td>
<td>Production of cell wall degrading enzymes during in vitro antagonism of S. rolfsii with Trichoderma fusant in culture medium at 4 days after inoculation</td>
<td>130</td>
</tr>
</tbody>
</table>
4.9 Correlation matrix between percent growth inhibition at 15 DAI and production of cell wall degrading enzymes during in vitro antagonism with \textit{Trichoderma} in the culture medium

4.10 GCMS analysis of only culture supernatant containing pathogen cell wall as a control

4.11 GCMS analysis of parent P1 (\textit{T. virens} NBAII Tvs12) under synthetic media containing pathogen cell wall

4.12 GCMS analysis of parent P2 (\textit{T. koningii} MTCC 796) under synthetic media containing pathogen cell wall

4.13 GCMS analysis of best \textit{Trichoderma} fusant (Fu 21) under synthetic media containing pathogen cell wall

4.14 GCMS analysis of moderate \textit{Trichoderma} fusant (Fu 19) under synthetic media containing pathogen cell wall

4.15 GCMS analysis of least \textit{Trichoderma} fusant (Fu 28) under synthetic media containing pathogen cell wall

4.16 Number of unique and common compounds identified in \textit{Trichoderma} parents (P1 and P2) and their fusants (Fu 21- Best, Fu 19- Moderate and Fu 28 – Least)

4.17 Unique and common compounds identified in \textit{Trichoderma} parents (P1 and P2) and their fusants (Fu 21- Best, Fu 19- Moderate and Fu 28 – Least)

4.18 Comparative evaluation of major compounds detected in \textit{Trichoderma} parents (P1 and P2) and their fusants (Fu 21- Best, Fu 19- Moderate and Fu 28 – Least)

4.19 Top 50 features/secretome identify by fold change analysis

4.20 Important features/secretome identified by volcano plot

4.21 Biological active compounds identified by GCMS analysis and its function

4.22 Total RNA quantifications and purity of fusants and their parental strains

4.23 Raw reads statistics

4.24 High Quality (HQ) reads statistics

4.25 Details of reference genome sequence downloaded from NCBI
4.26 Read mapping statistic on known miRNAs of P1_C
4.27 Read mapping statistic on known miRNAs of P2_C
4.28 Read mapping statistic on known miRNAs of FU21_CB
4.29 Read mapping statistic on known miRNAs of FU28_CL
4.30 Read mapping statistic on known miRNAs of P1_I
4.31 Read mapping statistic on known miRNAs of P2_I
4.32 Read mapping statistic on known miRNAs of FU21_IB
4.33 Read mapping statistic on known miRNAs of FU28_IL
4.34 The detail list of common and unique miRNAs derived from *Trichoderma* fusants and their parental strains during normal growth
4.35 The detail list of common and unique miRNAs derived from *Trichoderma* fusants and their parental strains during interaction with test pathogen
4.36 List of miRNAs found common and unique for best fusants Fu 21 during control and interaction condition
4.37 Novel mature miRNA statistics from P1_C
4.38 Novel mature miRNA statistics from P2_C
4.39 Novel mature miRNA statistics from FU21_CB
4.40 Novel mature miRNA statistics from FU28_CB
4.41 Novel mature miRNA statistics from P1_I
4.42 Novel mature miRNA statistics from P2_I
4.43 Novel mature miRNA statistics from FU21_IB
4.44 Novel mature miRNA statistics from FU28_IL
4.45 Top 50 micro RNA identify by fold change analysis (FU_21CB/FU_21IB)
4.46 Target gene prediction of selective miRNA (Fu21_IB) and KEGG pathway annotation
4.47 Secondary structure of some important miRNA and related pathways
4.48 Number of unique and common compounds identified in *Trichoderma* parents (P1 and P2) and their fusants (Fu 21- Best and Fu 28 – Least) during normal growth as a control as well as
during interaction with test pathogen *S. rolfsii* as a treated

4.49 Unique and common compounds identified in *Trichoderma* parents (P1 and P2) and their fusants (Fu 21 – Best and Fu 28 – Least) during normal growth as a control as well as during interaction with test pathogen *S. rolfsii* as a treated

4.50 Comparative evaluation of major compounds detected in *Trichoderma* parents (P1 and P2) and their fusants (Fu 21 – Best and Fu 28 – Least) during normal growth as a control as well as during interaction with test pathogen *S. rolfsii* as a treated

4.51 Top 50 metabolites identified by fold change analysis

4.52 Important metabolites identified by t-tests

4.53 Important metabolites identified by volcano plot

4.54 Biological active compounds identified by intra cellular metabolomic analysis analysis and its function

4.55 Zeta potential analysis of silver nanoparticles of *Trichoderma* fusant (Fu 21)

4.56 FT-IR analysis of the *Trichoderma* fusant (Fu 21) culture supernatant

4.57 FT-IR analysis of the silver nitrate (AgNO3) solution

4.58 FT-IR analysis of the *Trichoderma* fusant (Fu 21) based green synthesized AgNPs

4.59 Cell viability test (MTT test; OD/ml) of test pathogen incubated with nanoformulations containing different concentration of green Ag-NPs at different time interval

4.60 Leakage of protein (mg/g mycelia) of test pathogen incubated with nanoformulations containing different concentration of green Ag-NPs at different time interval

4.61 Leakage of sugars (mg/g mycelia) of test pathogen incubated with nanoformulations containing different concentration of green Ag-NPs at different time interval

4.62 Respiratory chain LDH activity (OD/g mycelia) of test pathogen incubated with nanoformulations containing different concentration of green Ag-NPs at different time interval
4.63 MDA content as Lipid peroxidation (MDA content mg/g mycelia) of test pathogen incubated with nanoformulations containing different concentration of green Ag-NPs at different time interval

4.64 Cell viability, leakages of cell membrane compounds, respiratory chain enzyme and lipid peroxydation of pathogen mycelia incubated with different concentration of nanoformulations at 3 days after inoculation

4.65 Effect of live antagonists (*Trichoderma* Fu 21) alone, combined *Trichoderma* Fu 21 and mixture of fungicides, nanoformulations of Fu 21 (20 µg/ml) and fungicide carbendazim on Seedling emergence of groundnut plants at 10 DAS

4.66 Effect of live antagonists (*Trichoderma* Fu 21) alone, combined *Trichoderma* Fu 21 and mixture of fungicides, nanoformulations of Fu 21 (20 µg/ml) and fungicide carbendazim on stem rot disease incidence at various intervals

4.67 Effect of live antagonists (*Trichoderma* Fu 21) alone, combined *Trichoderma* Fu 21 and mixture of fungicides, nanoformulations of Fu 21 (20 µg/ml) and fungicide carbendazim on stem rot disease severity at harvest stage on 58 days after sowing (DAS)
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Groundnut growing areas in India</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Disease cycle of S. rolfsii</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic representation of the miRNA screening procedure used to identify homologues of conserved and novel miRNAs from the Trichoderma antagonist</td>
<td>69</td>
</tr>
<tr>
<td>3.2</td>
<td>Graphical presentation of mean weather data (weak) during entire crop growth (June to October-2017) of groundnut</td>
<td>84</td>
</tr>
<tr>
<td>4.1</td>
<td>SEM images indicate interaction between Trichoderma strains and pathogen S. rolfsii during inhibition [A-Pathogen S. rolfsii mycelia (control) B- mycoparasitic strain T. virens NBAII Tvs12 showing coiling around host hyphae, and C- antibiotic strain T. konongii MTCC 796 without coiling or penetration of host hyphae. (P-Pathogen; T- Trichoderma)]</td>
<td>98</td>
</tr>
<tr>
<td>4.2</td>
<td>Inhibition coefficient, sclerotial count and lipid peroxidation of S. rolfsii during in vitro antagonism with twenty Trichoderma strains (bars indicate standard deviations between three experiments)</td>
<td>100</td>
</tr>
<tr>
<td>4.3</td>
<td>Growth of twenty Trichoderma strains in PDA plates as well as plates supplemented with fungicides (Carbendazim, Tebuconazole, Thiram, Mancozeb), PEG and salt (NaCl) containing at 28°C as compare to control (bars indicate standard deviations between three experiments)</td>
<td>102</td>
</tr>
<tr>
<td>4.4</td>
<td>Dendrogram depicting the genetic relationship among twenty isolates of Trichoderma strains and pathogen S. rolfsii based on the SSR data</td>
<td>106</td>
</tr>
<tr>
<td>4.6</td>
<td>Protoplast fusion stages: (A) and (B) showing the release of</td>
<td>109</td>
</tr>
</tbody>
</table>
protoplasts from parent strains *T. virens* NBAII Tvs12 and *T. koningii* MTCC 796 respectively by means of enzymatic action, (C) and (D) showing the released protoplasts from parent strains *T. virens* NBAII Tvs12 and *T. koningii* MTCC 796 respectively, (E) and (F) showing fusion of protoplasts of parental strains after treatment with PEG, (G) showing enlargement of fusion product and (H) showing regeneration of fusant on PRMM media.

4.7 Conidial morphology of parental strains and stable homozygous and heterozygous mutants (100X). The bar marker represents 10µM. [(A) *T. virens* NBAII Tvs 12 (P1) Haploid, (B) *T. koningii* MTCC 796 (P2) Haploid, (C) Fu 21 (Heterozygous mutant) and (D) Fu 28 (Homozygous mutant)]

4.8 Inhibition coefficient of *Sclerotium rolfsii* (%) and radial growth of *Trichoderma* fusants (mm) cultured in PDA plates supplemented with mixture of fungicides (Carbendazim + Tebuconazole + Thiram + Mancozeb) as well as abiotic stress (Drought- PEG 6000 + salt -NaCl) compared to their parental strains (P1- *T. virens* NBAII Tvs12 and P2- *T. koningii* MTCC 796) (Bar indicates standard deviation between three replications)

4.9 Scanning electron micrograph depicting evidence of mycoparasitism or pathogen *S. rolfsii* (P) mycelium degradation pattern of antagonist [(A) *T. virens* NBAII Tvs 12 (P1), (B) *T. koningii* MTCC 796 (P2) and (C) potent *Trichoderma* fusant (Fu 21) at 10 days after inoculation]

4.10 Principal coordinate analysis of 36 fusants, 2 parents and 1 pathogen (*S. rolfsii*) [Pop 1 - 2 parents and 1 pathogen (*S. rolfsii*). Pop 2 - 36 *Trichoderma* fusants]

4.11 UPGMA based dendrogram depicting phylogenetic relationships between *Trichoderma* fusants and their parents using gene specific SSR data [P1= *T. virens* NBAII Tvs12; P2= *T. koningii* MTCC 796; Fu 1 to Fu 36= *Trichoderma* protoplast fusants and pathogen = *S. rolfsii* (9107.13)]
4.12 Extra cellular extraction of crude enzyme from antagonist *Trichoderma* fusants mycelium in presence of pathogen *S. rolfsii* cell wall

4.13 Chromatogram of GCMS profile obtained from of only culture supernatant containing pathogen cell wall as a control

4.14 Chromatogram of GCMS profile obtained from parent P1 (*T. virens* NBAII Tvs12) under synthetic media containing pathogen cell wall

4.15 Chromatogram of GCMS profile obtained from parent P2 (*T. koningii* MTCC 796) under synthetic media containing pathogen cell wall

4.16 Chromatogram of GCMS profile obtained from best *Trichoderma* fusant (Fu 21) under synthetic media containing pathogen cell wall

4.17 Chromatogram of GCMS profile obtained from moderate *Trichoderma* fusant (Fu 19) under synthetic media containing pathogen cell wall

4.18 Chromatogram of GCMS profile obtained from least *Trichoderma* fusant (Fu 28) under synthetic media containing pathogen cell wall

4.19 Venn diagram showing relationship between secretary metabolome of *Trichoderma* parents (P1 and P2) and their fusants (Fu 21- Best, Fu 19- Moderate and Fu 28 – Least)

4.20 Data normalization by secretome metabolites before analysis using MS spectra (Selected methods: Row wise normalization- quantile normalization; Data transformation- N/A; and data scaling- Pareto scaling)

4.21 Data normalization by sample before analysis using MS spectra (Selected methods: Row wise normalization- quantile normalization; Data transformation- N/A; and data scaling- Pareto scaling)

4.22 Important features selected by fold-change analysis with threshold 2. The red circles represent features above the threshold. Note the values are on log scale, so that both up-regulated and down regulated features can be plotted in a symmetrical way
Important features selected by volcano plot with fold change threshold (x) 2 and t-tests threshold (y) 0.1. The red circles represent features above the threshold. Note both fold changes and p values are log transformed. The more significant the feature is position away from the (0,0)

The overall correlation heatmap by feature/secretome

The overall correlation heatmap by samples

The 2-D scores graph showing relationship between each treatments for GC-MS

Heat map showing relationship of *Trichoderma* parents (P1 and P2) and their fusants (Fu 21- Best, Fu 19- Moderate and Fu 28 – Least) to produce metabolites during interaction with pathogen cell wall in synthetic media

Phylogenic tree based on metabolic profile of *Trichoderma* parents (P1 and P2) and their fusants (Fu 21- Best, Fu 19- Moderate and Fu 28 – Least)

Fusants and their parental *Trichoderma* strains during normal growth and interaction with pathogen at 8 DAI

Total RNA electrophoregram summary of fusants and their parental strains

The unique and common sequence parental strains and fusants during normal growth and interactions with pathogen

Important features selected by volcano plot with fold change threshold (x) 2 and t-tests threshold (y) 0.1. The red circles represent features above the threshold. Note both fold changes and p values are log transformed. The more significant the feature is position away from the (0,0)

GO distribution and gene ontology of best fusant FU21 during normal growth and interaction with pathogen *S. rolfsii*

Gene ontology of best fusant FU21 during normal growth and interaction with pathogen *S. rolfsii*

Chromatogram of intra cellular GCMS profile obtained from culture supernatant
4.36 Chromatogram of intra cellular GCMS profile obtained from parent P1 (T. virens NBAII Tvs12) during normal growth as a control 221
4.37 Chromatogram of intra cellular GCMS profile obtained from parent P2 (T. koningii MTCC 796) during normal growth as a control 221
4.38 Chromatogram of intra cellular GCMS profile obtained from best Trichoderma fusant (Fu 21) during normal growth as a control 222
4.39 Chromatogram of intra cellular GCMS profile obtained from least Trichoderma fusant (Fu 28) during normal growth as a control 222
4.40 Chromatogram of intra cellular GCMS profile obtained from P1 (T. virens NBAII Tvs12) during interaction with pathoen S. rolfsii 223
4.41 Chromatogram of intra cellular GCMS profile obtained from parent P2 (T. koningii MTCC 796) during interaction with pathoen S. rolfsii 223
4.42 Chromatogram of intra cellular GCMS profile obtained from best Trichoderma fusant (Fu 21) during interaction with pathoen S. rolfsii 224
4.43 Chromatogram of intra cellular GCMS profile obtained from least Trichoderma fusant (Fu 21) during interaction with pathoen S. rolfsii 224
4.44 Venn diagram showing relationship between intra cellular metabolome of Trichoderma parents (P1 and P2) and their fusants (Fu 21- Best and Fu 28 – Least) during normal growth as a control 226
4.45 Venn diagram showing relationship between intra cellular metabolome of Trichoderma parents (P1 and P2) and their fusants (Fu 21- Best and Fu 28 – Least) during interaction with test pathogen S. rolfsii as a treated 227
4.46 Data normalization by metabolites before analysis using MS spectra (Selected methods: Row wise normalization- quantile normalization; Data transformation- N/A; and data scaling- Pareto scaling) 243
4.47 Data normalization by sample before analysis using MS spectra 244
(Selected methods: Row wise normalization- quantile normalization; Data transformation- N/A; and data scaling- Pareto scaling)

4.48 Important metabolites selected by fold-change analysis with threshold 2. The red circles represent metabolites above the threshold. Note the values are on log scale, so that both up-regulated and downregulated metabolites can be plotted in a symmetrical way

4.49 Important metabolites selected by t-tests with threshold 0.05. The red circles represent metabolites above the threshold. Note the p values are transformed by -log10 so that the more significant metabolites (with smaller p values) will be plotted higher on the graph

4.50 Important metabolites selected by volcano plot with fold change threshold (x) 2 and t-tests threshold (y) 0.1. The red circles represent metabolites above the threshold. Note both fold changes and p values are log transformed and the more significant the metabolites position away from the (0,0)

4.51 The overall correlation heatmap by feature/metabolites

4.52 Scree plot shows the variance explained by PCs. The green line on top shows the accumulated variance explained; the blue line underneath shows the variance explained by individual PC

4.53 The 2-D scores graph showing relationship between each treatments for GC-MS

4.54 Heat map showing relationship of *Trichoderma* parents (P1 and P2) and their fusants (Fu 21- Best and Fu 28 – Least) during normal growth as a control as well as during interaction with test pathogen *S. rolfsii* as a treated

4.55 Phylogenetic tree based on metabolic profile of *Trichoderma* parents (P1 and P2) and their fusants (Fu 21- Best and Fu 28 – Least) during normal growth as a control as well as during interaction with test pathogen *S. rolfsii* as a treated

4.56 Flasks containing *Trichoderma* fusant (Fu 21) culture supernatant
in aqueous AgNO₃ solution: A) At the beginning of reaction showing no color change, B) After 72 hrs of reaction showing brown color and C) With increase in time color intensity increased

4.57 UV spectra of silver nanoparticles synthesized by *Trichoderma* fusant (Fu 21)

4.58 A) Particle size analysis and B) Peak summary of silver nanoparticles of *Trichoderma* fusant (Fu 21)

4.59 FT-IR spectrum of culture supernatant (without NPs), AgNO₃ solution and *Trichoderma* fusant (Fu 21) based AgNPs

4.60 Comparison of individual FT-IR peak obtained from culture supernatant (without NPs), AgNO₃ solution and *Trichoderma* fusant (Fu 21) based AgNPs

4.61 SEM images of the silver nanoparticles formed by the reaction of 1mM AgNO₃ and *Trichoderma* fusant (Fu 21) broth

4.62 EDAX images of the silver nanoparticles formed by the reaction of 1mM AgNO₃ and *Trichoderma* Fusant (Fu 21) supernatant

4.63 Live antagonist (*Trichoderma* Fu 21) and Six different concentrations of green Ag-NPs (10, 20, 40, 80, 100 and 200 µg/ml) were co-incubated with *S. rolfsii* mycelia suspended in phosphate buffer

4.64 Cell viability test (MTT test; OD/ml) of test pathogen incubated with nanoformulations containing different concentration of green Ag-NPs

4.65 Leakage of protein (mg/g mycelia) of test pathogen incubated with nanoformulations containing different concentration of green Ag-NPs

4.66 Leakage of sugars (mg/g mycelia) of test pathogen incubated with nanoformulations containing different concentration of green Ag-NPs

4.67 Respiratory chain LDH activity (OD/g mycelia) of test pathogen incubated with nanoformulations containing different concentration of green Ag-NPs
4.68 MDA content as Lipid peroxidation (MDA content mg/g mycelia) of test pathogen incubated with nanoformulations containing different concentration of green Ag-NPs

4.69 Cell viability, leakage of cell membrane compounds, respiratory chain enzyme and lipid peroxidation of pathogen mycelia incubated with different concentration of nanoformulations at 3 days after inoculation
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Title</th>
<th>After Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Pure culture of Trichoderma strains</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Pure culture of Trichoderma strains and pathogen</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Microscopic observation of Trichoderma strains using lactophenol cotton blue staining</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Microscopic observation of Trichoderma strains using lactophenol cotton blue staining</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>Microscopic observation of S. rolfsii using lactophenol cotton blue staining</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>In vitro antagonism of Trichoderma strains against S. rolfsii</td>
<td>94</td>
</tr>
<tr>
<td>4.5</td>
<td>In vitro antagonism of Trichoderma strains against S. rolfsii</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>In vitro antagonism of Trichoderma strains against S. rolfsii</td>
<td>94</td>
</tr>
<tr>
<td>4.7</td>
<td>Screening of potent Trichoderma strains for fungicide resistance (Carbendazim, Tebuconazole, Thiram, Mancozeb) and abiotic stress tolerance (Salt- Nacl and Drought- PEG)</td>
<td>101</td>
</tr>
<tr>
<td>4.8</td>
<td>Gene specific SSR primers amplified across twenty Trichoderma strains and pathogen S. rolfsii</td>
<td>105</td>
</tr>
<tr>
<td>4.9</td>
<td>Gene specific SSR primers amplified across twenty Trichoderma strains and pathogen S. rolfsii</td>
<td>105</td>
</tr>
<tr>
<td>4.10</td>
<td>Gene specific SSR primers amplified across twenty Trichoderma strains and pathogen S. rolfsii</td>
<td>105</td>
</tr>
<tr>
<td>4.11</td>
<td>Gene specific SSR primers amplified across twenty Trichoderma strains and pathogen S. rolfsii</td>
<td>105</td>
</tr>
<tr>
<td>4.12</td>
<td>Gene specific SSR primers amplified across twenty Trichoderma strains and pathogen S. rolfsii</td>
<td>105</td>
</tr>
<tr>
<td>4.13</td>
<td>Gene specific SSR primers amplified across twenty Trichoderma strains and pathogen S. rolfsii</td>
<td>105</td>
</tr>
<tr>
<td>4.14</td>
<td>Gene specific SSR primers amplified across twenty Trichoderma strains and pathogen S. rolfsii</td>
<td>105</td>
</tr>
<tr>
<td>4.15</td>
<td>Gene specific SSR primers amplified across twenty Trichoderma strains and pathogen S. rolfsii</td>
<td>105</td>
</tr>
</tbody>
</table>
4.16 Gene specific SSR primers amplified across twenty *Trichoderma* strains and pathogen *S. rolfsii*

4.17 Pure culture of parental *Trichoderma* strains (P1 and P2) and their fusants

4.18 Pure culture of parental *Trichoderma* strains (P1 and P2), their fusants and pathogen

4.19 Screening of protoplast fusion products in comparison to their parental native *Trichoderma* strain on PDA media [A- Pure culture of parents and regenerated stable fusants (10 DAI); B- Fungicide tolerance (Carbendazim 50 WP -5 ppm a.i., Tebuconazole 100 WP -500 ppm a.i., Thiram 75 SD -1000 ppm a.i., Mancozeb 75 WP -3000 ppm a.i.) (15 DAI); C- Abiotic stress tolerance (Salt- 100 mM NaCl and Drought- 11.9 % PEG 6000) (15 DAI) and D- Antagonism activity in dual culture (Left side-Test pathogen, Right side- *Trichoderma* parents and fusants); P1= *T. virens* NBAII Tvs12; P2= *T. koningii* MTCC 796; Fu 1 to Fu 36= 36 *Trichoderma* protoplast fusants; and Control = pathogen *S. rolfsii* (9107.13); DAI - Days after inoculation]

4.20 Screening of protoplast fusion products in comparison to their parental native *Trichoderma* strain on PDA media [A- Pure culture of parents and regenerated stable fusants (10 DAI); B- Fungicide tolerance (Carbendazim 50 WP -5 ppm a.i., Tebuconazole 100 WP -500 ppm a.i., Thiram 75 SD -1000 ppm a.i., Mancozeb 75 WP -3000 ppm a.i.) (15 DAI); C- Abiotic stress tolerance (Salt- 100 mM NaCl and Drought- 11.9 % PEG 6000) (15 DAI) and D- Antagonism activity in dual culture (Left side-Test pathogen, Right side- *Trichoderma* parents and fusants); P1= *T. virens* NBAII Tvs12; P2= *T. koningii* MTCC 796; Fu 1 to Fu 36= 36 *Trichoderma* protoplast fusants; and Control = pathogen *S. rolfsii* (9107.13); DAI - Days after inoculation]

4.21 Screening of protoplast fusion products in comparison to their parental native *Trichoderma* strain on PDA media [A- Pure culture of parents and regenerated stable fusants (10 DAI); B- Fungicide
Screening of protoplast fusion products in comparison to their parental native *Trichoderma* strain on PDA media [A- Pure culture of parents and regenerated stable fusants (10 DAI); B- Fungicide tolarance (Carbendazim 50 WP -5 ppm a.i., Tebuconazole 100 WP -500 ppm a.i., Thiram 75 SD -1000 ppm a.i., Mancozeb 75 WP -3000 ppm a.i.) (15 DAI); C- Abiotic stress tolerance (Salt- 100 mM NaCl and Drought- 11.9 % PEG 6000) (15 DAI) and D- Antagonism activity in dual culture (Left side-Test pathogen, Right side-*Trichoderma* parents and fusants); P1= *T. virens* NBAII Tvs12; P2= *T. koningii* MTCC 796; Fu 1 to Fu 36= 36 *Trichoderma* protoplast fusants; and Control = pathogen *S. rolfsii* (9107.13); DAI - Days after inoculation]
Screening of protoplast fusion products in comparison to their parental native *Trichoderma* strain on PDA media [A- Pure culture of parents and regenerated stable fusants (10 DAI); B- Fungicide tolerance (Carbendazim 50 WP -5 ppm a.i., Tebuconazole 100 WP -500 ppm a.i., Thiram 75 SD -1000 ppm a.i., Mancozeb 75 WP -3000 ppm a.i.) (15 DAI); C- Abiotic stress tolerance (Salt- 100 mM NaCl and Drought- 11.9 % PEG 6000) (15 DAI) and D- Antagonism activity in dual culture (Left side-Test pathogen, Right side- *Trichoderma* parents and fusants); P1= *T. virens* NBAII Tvs12; P2= *T. koningii* MTCC 796; Fu 1 to Fu 36= 36 *Trichoderma* protoplast fusants; and Control = pathogen *S. rolfsii* (9107.13); DAI - Days after inoculation]

Gene specific SSR markers amplified across *Trichoderma* fusants and their parents

Evaluation of *Trichoderma* fusants (10^6 conidia ml^-1) treated groundnut seeds for fungicides (mix) tolerance on PDA media

Biocontrol potentials of *Trichoderma* fusant (Fu 21) and its
nanoformulation to diminish stem rot caused by *S. rolfsii* in groundnut at seedling stage (10 DAS)

4.36 Biocontrol potentials of *Trichoderma* fusant (Fu 21) and its nanoformulation to diminish stem rot caused by *S. rolfsii* in groundnut at flowering stage (26 DAS)

4.37 Biocontrol potentials of *Trichoderma* fusant (Fu 21) and its nanoformulation to diminish stem rot caused by *S. rolfsii* in groundnut at peg formation stage (45 DAS)

4.38 Biocontrol potentials of *Trichoderma* fusant (Fu 21) and its nanoformulation to diminish stem rot caused by *S. rolfsii* in groundnut at pod formation stage (82 DAS)

4.39 Biocontrol potentials of *Trichoderma* fusant (Fu 21) and its nanoformulation to diminish stem rot caused by *S. rolfsii* in groundnut at harvesting stage (118 DAS)

4.40 Post infection of *S. rolfsii* in groundnut at harvesting stage formation stage influenced by *Trichoderma* fusant (Fu 21) and its nanoformulation under infested and non-infested soil condition (45 DAS)

4.41 Root growth and root proliferation of groundnut at peg formation stage influenced by *Trichoderma* fusant (Fu 21) and its nanoformulation under *S. rolfsii* infested and non-infested soil condition (118 DAS)