LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page/After page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Different stages of flower development in groundnut genotype GJG-22</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Transcriptomics analysis workflow</td>
<td>69</td>
</tr>
<tr>
<td>3.3</td>
<td>qRT analysis workflow</td>
<td>69</td>
</tr>
<tr>
<td>3.4</td>
<td>Metabolomic profiling workflow</td>
<td>79</td>
</tr>
<tr>
<td>3.5</td>
<td>Proteomic analysis workflow</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>Total RNA from 12 different samples on 1.2% Agarose gel for quality assessment</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Amplified cDNA library on E-Gel (2% Agarose Gel) comparing with 50 bp marker and cDNA library of 12 samples</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Per base sequence quality score of all groundnut samples</td>
<td>85</td>
</tr>
<tr>
<td>4.3a</td>
<td>Per base sequence quality score of Bud, Flower, Peg, LL1, LL2 and LL3</td>
<td>85</td>
</tr>
<tr>
<td>4.3b</td>
<td>Per base sequence quality score of S1, S2, S3, UL1, UL2 and UL3</td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>Sequence length distribution of all groundnut samples</td>
<td>87</td>
</tr>
<tr>
<td>4.4a</td>
<td>Sequence length distribution of Bud, Flower, Peg, LL1, LL2, and LL3</td>
<td>87</td>
</tr>
<tr>
<td>4.4b</td>
<td>Sequence length distribution of S1, S2, S3, UL1, UL2 and UL3</td>
<td>87</td>
</tr>
<tr>
<td>4.5</td>
<td>Contig length distribution in all twelve sample</td>
<td>89</td>
</tr>
<tr>
<td>4.6</td>
<td>Accumulated contig lengths in all twelve sample</td>
<td>89</td>
</tr>
<tr>
<td>4.7</td>
<td>Distribution of mapped read length of all twelve samples</td>
<td>95</td>
</tr>
<tr>
<td>4.8</td>
<td>Reads of groundnut genotype GJG-22 at flower developmental stages, of all twelve samples; mapped reads with Chromosome 1 of Arabidopsis thaliana genome</td>
<td>95</td>
</tr>
<tr>
<td>4.8a</td>
<td>Bud, Flower and Peg; mapped reads</td>
<td>95</td>
</tr>
<tr>
<td>4.8b</td>
<td>LL1, LL2 and LL3; mapped reads</td>
<td>95</td>
</tr>
<tr>
<td>4.8c</td>
<td>S1, S2 and S3; mapped reads</td>
<td>95</td>
</tr>
<tr>
<td>4.8d</td>
<td>UL1, UL2 and UL3; mapped reads</td>
<td>95</td>
</tr>
</tbody>
</table>
4.9 Reads of groundnut genotype GJG-22 at flower developmental stages, of all twelve samples mapped reads with Mitochondrial genome of *Arabidopsis thaliana*.

4.9a Bud, Flower and Peg; mapped reads

4.9b LL1, LL2 and LL3; mapped reads

4.9c S1, S2 and S3; mapped reads

4.9d UL1, UL2 and UL3; mapped reads

4.10 Clustering of significantly differential expressed orthologous genes using k-means clustering method according to the gene expression profiles in all twelve samples

4.10a Gene expression profiles in Bud, Flower and Peg

4.10b Gene expression profiles in S1, S2 and S3

4.10c Gene expression profiles in UL1, UL2 and UL3

4.10d Gene expression profiles in LL1, LL2 and LL3

4.11 Comparative Heat map of all twelve samples

4.11a Comparative Heat map of Bud, Flower and Peg

4.11b Comparative Heat map of S1, S2 and S3

4.11c Comparative Heat map of UL1, UL2 and UL3

4.11d Comparative Heat map of LL1, LL2 and LL3

4.12 Mean expression versus log fold change plots (Volcano plots). Transcriptional changes presented (A) Bud, Flower and Peg; (B) LL1, LL2 and LL3; (C) S1, S2 and S3 and (D) UL1, UL2 and UL3

4.13 Scatter plot of expression profile between two groups of all twelve samples

4.13a (A) Bud vs. Flower, (B) Peg vs. Bud and (C) Peg vs. Flower

4.13b (A) LL1 vs. LL2, (B) LL1 vs. LL3 and (C) LL2 vs. LL3

4.13c (A) S1 vs. S2, (B) S1 vs. S3 and (C) S2 vs. S3

4.13d (A) UL1 vs. UL2, (B) UL1 vs. UL3 and (C) UL2 vs. UL3

4.14 The numbers of commonly expressed genes at different stages of flower development in twelve samples shown as the overlapping and non-overlapping regions

4.15 Blast2Go Analysis progress

4.16 Data distribution Pie chart
4.17 Number of sequences with length (X) 111
4.18 Maximum blast hit 111
4.19 Species distribution 111
4.20 Top-Hit Species distribution 111
4.21 E-value distribution 111
4.22 Sequence similarity distribution 111
4.23 Direct GO count (BP) 111
4.24 Overall Biological process (BP) 111
4.25 Direct GO count (MF) 111
4.26 Overall Molecular Function (MF) 111
4.27 Direct GO count (CC) 111
4.28 Overall Cellular Component (CC) 111
4.29 GO distribution by level (2) – Top 20 111
4.30 Enzyme code distribution 111
4.31 Evidence code distribution for BLAST Hits 111
4.32 Mapping database source 111
4.33 KEGG-MIOX4 gene related to myo-inositol oxygenase 4 enzyme in L-ascorbic acid biosynthetic process 111
4.34 KEGG-AT1G12010 gene related to 1-aminocyclopropane-1-carboxylate oxidase 3 enzyme in many cellular response process 111
4.35 KEGG-HSP70-3 gene related to Heat shock 70 kDa protein 1-like in MAPK signaling pathway for ATP binding, nucleotide binding 111
4.36 KEGG-Plant hormone signal transduction, in which ARF gene related to auxin response factor 2A protein encodes a putative function like, positive regulation of flower development and other cell growth and developmental functions 111
4.37 Amplification curve of all primers in RT-PCR 115
4.38 Melting curve of primers in RT-PCR 115
4.39 qRT-PCR of the relative expression data of fifteen genes obtained in groundnut transcriptome analysis. Error bars show standard deviations for triplicate assays. The fold regulation compared between samples at flower development stages in groundnut genotype GJG-22 115
4.40 GC-MS chromatographs of all groundnut samples metabolites 117
4.40a GC-MS chromatographs of groundnut samples
metabolites; Bud, Flower, Peg, UL1, UL2 and UL3

4.40b GC-MS chromatographs of groundnut samples metabolites; LL1, LL2, LL3, S1, S2 and S3

4.41 Distribution of major metabolite groups which changed significantly during flower development stages were analyzed by GC-MS

4.42 Dendogram of twelve samples of groundnut genotype GJG-22 at different stages of flower development

4.43 LC-MS QTOF mass spectrum of groundnut samples metabolites of all twelve samples

4.43a LC-MS QTOF mass spectrum of groundnut samples metabolites; Bud, Flower, Peg, UL1, UL2 and UL3

4.43b LC-MS QTOF mass spectrum of groundnut samples metabolites; LL1, LL2, LL3, S1, S2 and S3

4.44 Heat map of untargeted metabolites during flower development stages of groundnut genotype GJG-22

4.45 Dendogram of twelve samples of groundnut genotype GJG-22 at different stages of flower development

4.46 2DE analysis of 12% PAGE with pH 3-10 gradient strips was stained using CBB R-250 of groundnut all samples

4.46a 2DE analysis of Bud, LL1, S1 and UL1

4.46b 2DE analysis of S2, UL2, Flower and LL2.

4.46c 2DE analysis of LL3, Peg, S3 and UL3

4.47 3D-graph of Match ID spots of all twelve samples

4.47a (A) Match ID B10, (B) Match ID B58, (C) Match ID B64 and (D) Match ID B73

4.47b (A) Match ID F26, (B) Match ID F45, (C) Match ID F57 and (D) Match ID F98

4.47c (A) Match ID P13, (B) Match ID P27, (C) Match ID P43 and (D) Match ID P46