Fig. 3.1 Monthly meteorological parameters pertaining to the period of experimentation (2003-05)
Fig. 4.1 Seed yield (kg ha$^{-1}$) and stover yield (kg ha$^{-1}$) of mustard

Fig. 4.2 Influence of irrigation levels on grain yield (t ha$^{-1}$) and stover yield (t ha$^{-1}$) of winter maize during 2003-04 and 2004-05
Mustard at flowering stage

Maize at vegetative stage
Maize at reproductive stage

Pea at seedling stage
Fig. 4.3 Green pod yield (q ha$^{-1}$) of pea as influenced by irrigation levels.

Fig. 4.4 Total yield of cabbage (t ha$^{-1}$) as influenced by irrigation levels.
Cabbage at head initiation stage

Cabbage at head formation stage
Cabbage at head formation stage

Rice at booting stage
Fig. 4.5 Grain yield (t ha\(^{-1}\)) and straw yield (t ha\(^{-1}\)) of rice as influenced by cropping system.

Fig. 4.6 Effect of irrigation and cropping systems on seed yield (t ha\(^{-1}\)) and oil yield (t ha\(^{-1}\)) of sunflower.
Rice at booting stage

Sunflower at preflowering stage
Sunflower at flowering stage

Baby corn at detasseling stage
Baby corn at detasseling stage

Baby corn after harvesting (dehusked and husked ears)
Fig. 4.7 Effect of irrigation and cropping systems on husked yield (t ha\(^{-1}\)), dehusked yield (t ha\(^{-1}\)) and standard yield (t ha\(^{-1}\)) of baby corn.

Fig. 4.8 Rice equivalent yield (t ha\(^{-1}\)) of cropping sequences.
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cropping systems</th>
<th>2003-2004</th>
<th>2004-2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rice equivalent yield</td>
<td></td>
<td>Rice equivalent yield</td>
</tr>
<tr>
<td>Irrigation</td>
<td>C₁</td>
<td>C₂</td>
<td>C₃</td>
</tr>
<tr>
<td>l₀</td>
<td>32.67</td>
<td>19.98</td>
<td>8.45</td>
</tr>
<tr>
<td>l₁</td>
<td>46.48</td>
<td>22.33</td>
<td>11.31</td>
</tr>
<tr>
<td>l₂</td>
<td>72.52</td>
<td>23.46</td>
<td>11.96</td>
</tr>
<tr>
<td>l₃</td>
<td>71.92</td>
<td>23.79</td>
<td>13.39</td>
</tr>
<tr>
<td>Mean</td>
<td>55.90</td>
<td>22.39</td>
<td>11.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S E</th>
<th>M (±)</th>
<th>CD (P=0.05)</th>
<th>S E</th>
<th>M (±)</th>
<th>CD (P=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>0.208</td>
<td>0.7202</td>
<td>l</td>
<td>0.188</td>
<td>0.6539</td>
</tr>
<tr>
<td>C</td>
<td>0.316</td>
<td>0.9251</td>
<td>C</td>
<td>0.190</td>
<td>0.5557</td>
</tr>
<tr>
<td>lXC</td>
<td>0.587</td>
<td>1.7536</td>
<td>lXC</td>
<td>0.379</td>
<td>1.1602</td>
</tr>
<tr>
<td>C×l</td>
<td>0.633</td>
<td>1.8503</td>
<td>C×l</td>
<td>0.380</td>
<td>1.1113</td>
</tr>
</tbody>
</table>
Fig. 4.9 Production efficiency (kg ha\(^{-1}\) day\(^{-1}\)) of cropping sequences

Fig. 4.10 CU (cm) of winter and summer crops in cropping systems of 2003-2004 and 2004-05
Water use efficiency

Fig. 4.11 WUE (kg ha⁻¹ cm⁻¹) of winter and summer crops in cropping systems of 2003-04 and 2004-05

Fig. 4.12 Gross return (Rs ha⁻¹), net return (Rs ha⁻¹) of different cropping systems during 2003-04 and 2004-05

Fig. 4.13 Gross energy return (MJ ha⁻¹), net energy return (MJ ha⁻¹) of various cropping systems during 2003-04 and 2004-05
Summary and Conclusion
Future Scope of Research

