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a b s t r a c t

Relative performance of artificial neural networks (ANNs) and the conceptual model SALT-

MOD was studied in simulating subsurface drainage effluent and root zone soil salinity in

the coastal rice fields of Andhra Pradesh, India. Three ANN models viz. Back Propagation

Neural Network (BPNN), General Regression Neural Network (GRNN) and Radial Basis

Function Neural Network (RBFNN) were developed for this purpose. Both the ANNs and

the SALTMOD were calibrated and validated using the field data of 1998–2001 for 35 and 55 m

drain spacing areas. Data on irrigation depth, evapotranspiration, drain discharges, water

table depths, mean monthly rainfall and temperature and drainage effluent salinity were

used for ANN model training, testing and validation. It was observed that the BPNN model

with feed forward learning rule with 6 processing elements in input layer and 1 hidden layer

with 12 processing elements performed better than the other ANN models in predicting the

root zone soil salinity and drainage effluent salinity. Considering coefficient of determina-

tion, model efficiency and variation between the observed and predicted salinity values as

the evaluation parameters, the SALTMOD performed better in predicting root zone soil

salinity and the BPNN performed better in predicting the drainage effluent salinity. There-

fore, it was concluded that the BPNN with feed forward learning algorithm was a better

model than SALTMOD in predicting salinity of drainage effluent from salt affected subsur-

face drained rice fields.
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1. Introduction

The estimate of waterlogged and saline lands in India reported

by different sources varies from 4.75 to 16 million ha and 3.3 to

10.9 million ha, respectively (Bhattacharya, 1999). Also, high

water table areas cover about 2.6 and 3.4 million ha suffers from

surface water stagnation (Tyagi et al., 1993). There is a need to

reclaim the saline lands for bringing them under production

process and in achieving agricultural sustainability. In this

context, application of advanced tools in modeling the salinity

of these problematic areas would help in future projections and

in chalking out suitable remediation measures and best
* Corresponding author. Tel.: 9811400885 (mobile).
E-mail addresses: arjamadutta.sarangi@elf.mcgill.ca, asarangi@iar
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management practices. Coastal agricultural lands often face

the twin problems of waterlogging and salinity for which,

subsurface drainage is an appropriate and proven solution

(Singh et al., 2002a). In the coastal agricultural lands of southern

India, two crops of paddy rice, namely, rabi (January to May) and

kharif (July to November) are usually taken. Both suffer due to

either of the two problems of excessive soil salinity and

waterlogging. In a small but representative coastal rice land in

Andhra Pradesh, India, subsurface drainage systems were

installed at different spacings during the mid-eighties. The

present study is based on the analysis of various data pertaining

to the installed systems.
i.res.in (A. Sarangi).
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Singh et al. (2002a) simulated the performances of subsur-

face drained fields, using SALTMOD (Oosterbaan, 1998) for

computing soil salinity in the root zone soil and of drainage

effluent, drain flow rates, water table and several water balance

components for different water management options. SALT-

MOD, a seasonal water and salt balance model for agricultural

fields has been successfully calibrated and validated in Nile

delta of Egypt (Oosterbaan and Abu Senna, 1989) and in

Tungabhadra Irrigation Project, Karnataka, India. SALTMOD

requires input parameters viz. soil properties, climatic and

hydrologic parameters, drainage system parameters and

defined initial and boundary conditions for model operation

(Singh etal., 2002b).Softcomputingtoolswereusedinthisstudy

for prediction of salinity of the drainage effluent and root zone

depth soil of the coastal rice fields in Andhra Pradesh and

compare the results with those obtained using SALTMOD. The

multivariate adaptive regression splines (MARS) tool (Friedman,

1991) was used to select parameters that are relatively more

important in influencing drainage effluent salinity and these

were used in the artificial neural networks (ANNs) models to

simulate the same and compare the predictive performance of

ANN models with the SALTMOD.

Artificial neural networks are data processing systems

comprising a large number of simple, highly interconnected

processing elements (artificial neurons) in an architecture

inspired by the structure of the cerebral cortex (Tsoukalas and

Uherg, 1996). In a study to investigate the applicability of ANNs

in subsurface drained fields located in St-Dominique, Quebec,

Canada, Yang et al. (1996) used back propagation neural

network (BPNN) to imitate DRAINMOD in simulating water

table depths. They observed that, use of time lag procedure in

feeding the input values to the ANN resulted in better ANN

performance. They advocated considering the saturated

hydraulic conductivity and actual distance from the soil

surface to impermeable layer while considering the optimal

time dependency period as an input to the ANN. Salehi et al.

(2000) used BPNN with one hidden layer having eight

processing elements and different learning rules to predict

the annual nitrate-nitrogen losses via the drain outflow at

Agriculture Canada’s Woodslee Research Station, Ontario. The

BPNN could effectively predict the loss of nitrate-nitrogen via

drain outflows, but the model itself is not transportable to any

other site. However, ANN can be used as an identifying tool to

discard unnecessary parameters used for modeling to save

time and resources in data collection. Sharma et al. (2003)

developed two ANN models viz. a fast back propagation neural

network model (FBPNN) and a self-organizing radial basis

function neural network model (RBFNN) to simulate the

subsurface drain outflow and nitrate-nitrogen concentration

in the tile drainage effluent from Greenbelt Research Farm,

Ontario, Canada. In their study the performance of RBFNN was

superior.

It has been demonstrated that neural networks are a

competitive alternative to traditional classifiers for many

practical classification problems (Zhang, 2000). ANNs have the

advantage over deterministic models, as the ANNs require

lesser data and are capable of long term forecasting. The

disadvantages of ANN are that it is based on a ‘black box’

approach and the solution is obtained through a trial and error

process (Sharma et al., 2003). However, inclusion of system
parameters as processing elements (PEs) or as mathematical

association with the PEs in the input layer will reorient the

ANNs from a complete ‘black box’ to a ‘gray box’ approxima-

tion (Sarangi and Bhattacharya, 2005). There has been a

growing trend of application of ANNs in hydrology and water

quality modeling (ASCE, 2000; Sudheer et al., 2002; Yitian and

Gu, 2003; Zhang and Govindaraju, 2003) and land drainage

engineering (Shukla et al., 1996; Yang et al., 1996). The MARS

can also be used as a tool to identify redundant parameters in

predictive analysis and select the sensitive parameters for

consideration in model development (Abraham and Steinberg,

2001). The use of MARS tool in selection of the sensitive input

parameters and development of ANN models to predict the

salinity of drainage effluent in this study is a new approach for

simulating the complex salt dynamics in artificially drained

soils.
2. Materials and methods

2.1. Data acquisition

The data for the study were acquired from the subsurface

drained rice fields of Endakuduru village in Krishna district of

Andhra Pradesh in India. It is located within 158430 and 178100N

latitude and 80800 and 818330E longitude, situated 18 km to the

west of Bay of Bengal at an elevation of 1.5 m amsl. The land is

flat and is dyked in small units for rice cultivation. The

groundwater is shallow and highly saline due to seawater

intrusion. The site experiences a moderate coastal climate

with mean annual rainfall of 975 mm and mean annual

maximum and minimum temperatures of 36.6 and 19.3 8C,

respectively. The subsurface drainage system layout consisted

of five laterals with three laterals at 35 m spacing and two

laterals at 55 m spacing covering the experimental site of 4 ha.

The average depth of the lateral drains was 1 m. The

climatological data used for both the ANN and SALTMOD

models are given in Table 1. Further details about the cropping

pattern, data collection and ranges of input data values for

SALTMOD were adopted from Singh et al. (2002a). The

drainage water quality and quantity, depth to water table

and root zone salinity at different depths were measured

fortnightly during the rabi rice season of each year for a period

of 4 years (from year 1998 to 2001) resulting in 40 measured

data sets. The rabi rice crop season was chosen for field data

collection, as most farmers grow rice in this cropping season

due to assured canal water availability for irrigation.

2.2. Multivariate adaptive regression spline (MARS) for
sensitivity analysis

The MARS 2.0 software (Friedman, 1991) was used to estimate

the relative significance of the available data in predicting the

salinity of drainage effluent. The concepts used in MARS tool

permits the user to analyze the data set and generate the input

parameters, which are of more significance in generation of

the desired output and display the empirical model of best fit.

Finally, the validation input data set is entered into the model

and the output is compared with the observed values to decide

on the future model applicability.
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In this study, the data of rainfall (mean monthly and

normal), temperature (maximum, minimum and average),

mean daily potential-evapotranspiration (PET), water table

depths, quantity and salinity of irrigation water, saturated

hydraulic conductivity and drainable porosity and leaching

efficiency under different zones were used as input. Root zone

salinity for 0–30 cm and 30–60 cm soil layers and salinity of

drained effluent were used as output parameters. After

running the MARS tool with the data sets of 35 and 55 m

spaced subsurface drained fields, importance-wise, the input

parameters: salinity of irrigation water (IWS), quantity of

irrigation water (QIrrig), mean monthly rainfall (MMR), mean

daily potential-evapotranspiration (PET), water table depths

(WTD) and the average mean monthly temperature (AMT)

topped the list. The rest of the parameters were towards the

bottom in the list of relative importance. Therefore, the input

data of IWS, QIrrig, MMR, WTD, PET and AMT were used as the

input parameters for ANN models against the output para-

meters of root zone and drainage effluent salinity.

In general, the ANN models are operated by using the

available input and output responses without considering the

inherent system parameters. Therefore, in an attempt to

elevate the complete ‘‘black box’’ approximation of the ANN

models, in this study, the MARS tool was used to consider most

of the system response parameters as detailed in SALTMOD

and the relatively important parameters obtained were used

as input nodes (PEs) to selected ANN models. So the

completely ‘‘black box’’ nature of prediction through ANN

models were minimized by inclusion of the MARS derived

system response parameters as discussed in this section to

simulate the performance of subsurface drained rice field of

the experimental site. Therefore, the inclusion of MARS

generated parameters as PEs of the input layer was an effort

towards elevating the ANNs from ‘‘black box’’ modeling

approach to a ‘‘gray box’’ approximation.

2.3. Artificial neural network (ANN) model architecture
selection and simulation

The BPNN, GRNN and RBFNN with different architectures were

used in the present study. These ANNs were chosen due to

their variant structure and interpretation in multidimensional

spaces with different mathematical foundations for solving

ill-conditioned problems. Also, it was revealed from the

literature that these three ANNs were adopted by the

researchers in modeling the drainage effluent quality and

quantity under sub surface drained agricultural fields (Yu

et al., 2004; Sharma et al., 2003; Salehi et al., 2000; Shukla et al.,

1996; Yang et al., 1996). Due to smaller data size, these three

ANNs were tested to ascertain which was better suited over

the others to accurately predict the subsurface drainage

performances in drained rice fields. A major advantage of ANN

is that it can be used for smaller data sets without any fixed

rules for developing its architecture (Sudheer et al., 2002). So,

in this study, different ANN architectures were attempted

with the experimental data through trial and error approach to

improve the prediction accuracy. The Neural Works Profes-

sional II/PLUS 5.23v and the ANN module of MATLAB 6.5v

software were used to develop the ANN models with optimal

architecture and to perform subsequent validation.
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Fig. 1 – The architecture of ANN models used for modeling the salinity of subsurface drained rice fields.
2.3.1. The back propagation neural network (BPNN)
Among different ANN algorithms, feed-forward network with

the BP training is widely used and is capable of recognizing the

nonlinear pattern and memory association (Zhang and

Govindaraju, 2003). BPNN is a multilayer perceptron network

in which each neuron is connected with a number of input

arcs (u1 to un). The network is associated with each neuron (i)

having weight Wij, which represents a multiplication factor to

a value passing to the neuron. Finally, a neuron sums the

values of all inputs and represented as:

S j ¼
Xn

i¼1

WijUiþ b (1)

In Fig. 1, Wu corresponds to the summation term used in

Eq. (1). The term b is called bias. Finally, an activation function

is applied to Sj for obtaining the final output from the neuron.

When a BPNN training algorithm is used, the sigmoid

activation function is most often preferred (Sivakumar

et al., 2002). The sigmoid function (w) is given by

’ðS jÞ ¼
1

1þ eS j
(2)

In the present study, the BPNN had one input layer, hidden

layer and output layer each. Each neuron in the input layer is

connected to each neuron in the hidden layer by weight Wij.

After an input neuron receives a signal Ui, it transmits it to the

hidden neuron. Each hidden neuron then computes the sum

UiWij entering from each input neuron, and transforms this

value to an output signal using sigmoid function.

The ANN input layer in this study consisted of six

processing elements (IWS, QIrrig, MMR, WTD, PET and AMT)

and the processing elements (PEs) of the hidden layer were

finalized by comparing the root mean square error (RMSE) of

the network learning using different numbers of PEs. The

output layer consisted of two processing elements repre-

senting the salinity of the soil at the root zone depth and of
the drainage effluent. The entire data was divided to

learning, testing and validation sets and the learning and

testing data were fed to the BPNN to select the optimal

architecture based on the RMSE values. During the process of

learning, the actual output value was compared with the

desired output and the error was calculated. The error values

were then propagated back into the network to update

connection weights between the different layers. These

processes were repeated until the network has been trained

to the lowest RMSE.

2.3.2. Radial basis function neural network (RBFNN)
Like the back-propagation network, the RBFNN has a feed-

forward architecture, which consists of three layers viz. one

input layer, one hidden layer and one output layer with a

number of PEs or nodes in each layer. This ANN derive its

structure and interpretation from the theory of interpolation

in multidimensional spaces and have a mathematical func-

tion embedded in regularization theory for solving ill-condi-

tioned problems (Zhang and Kushwaha, 1999). However, the

structure of an RBFNN is one of self-organized characteristics,

which allows for adaptive determination of the hidden

neurons during training of the network (Sharma et al.,

2003). Each input PE or neuron is completely connected to

all hidden neurons, and hidden neurons and output neurons

are also interconnected to each other by a set of weights.

Information fed into the network through input neurons is

transmitted to hidden neurons. Each hidden neuron then

transforms the input signal using a transfer function f. The

output of hidden neurons has the form of an RBFNN. For the

present model, the Gaussian function was selected as the

RBFNN. It is a positive radial symmetric function (kernel) with

a center m and a spread s. The spread is the radial distance

from the center of the kernel, within which the value of the

function is significantly different from zero. This is called the

receptive field (m � s) of a hidden neuron. An input pattern

falling within the receptive field will cause a significant

response. For each input pattern, the hidden neurons compute
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the distance between the input signal and the center of the

receiving field. For Gaussian function, the response is unity if

this distance is zero, and decays to zero when the distance is

greater than the spread. The basic difference between BPNN

and RBFNN is that the latter model represents the inputs

presented to the network during training phase in local

spaces with each local space being represented by a hidden

neuron. Therefore, any input to the model in the testing

phase that lies near a local space is closely predicted. On the

other hand, the BPNN model maps the relationships between

the inputs and outputs in global space for the training

scenarios. Therefore, the model fails to predict the localized

variation in data in the testing phase and this is also reflected

in model validation phases. In relation to the simulation

time, the RBFNN is faster than the BPNN for larger data sets

(Kim et al., 2003).

In training an RBF network, the hidden neurons are self-

organized with the training process (Zhang and Kushwaha,

1999). For this purpose, the orthogonal least squares (OLS)

algorithm proposed by Chen et al. (1991) was employed.

According to this algorithm, the number of hidden neurons at

the beginning of training is zero. The hidden neurons are

added one by one with training until the output of the network

is within a target precision. For every iteration, the RMSE from

the network is computed. If the error is lower than a pre-

defined tolerance (selected from the lowest RMSE in BPNN

training), the training is stopped and the number of neurons

added to the hidden layer represent the number of hidden

neurons required.

2.3.3. General regression neural network (GRNN)
The GRNN algorithm has little resemblance to the more

widely used BPNN but it is one of the variants of RBFNN

(Huang and Williamson, 1994). It has, at its root, one of the

most commonly used statistical techniques, i.e. regression

analysis and no iteration are involved in computing with the

GRNN algorithm. Another attractive feature is that, unlike

BPNN, a GRNN does not converge to local minima, can

handle incomplete patterns and approaches the problem on

the basis of the probability density function (pdf) of the

training data (Huang and Williamson, 1994). GRNN uses

one-pass learning algorithm which can be used for the

estimation of continuous variables, and converge to the

underlying regression surface. Mathematically, GRNN uses a

standard statistical algorithm for calculating the conditional

mean Y of a scalar random variable y given a measurement

X of a vector random variable x. The vector x corresponds to

the input to the network and the random variable y

corresponds to the output of the network. If there is more

than one output node, the same algorithm is used on each

output node. GRNN is dominated by the estimation of pdf of

x and y and is also used as a static regression technique.

GRNN can be used in situations where the statistics of the

data are changing over time. This is achieved by specifying a

time constant and a threshold, which are used to reset a

pattern node if it has not been used recently. The principal

advantages of GRNN are its quick learning and fast

convergence to optimal regression surface with large

numbers of data sets when compared with BPNN and

RBFNN (Kim et al., 2003).
2.3.4. Neural network simulations and optimum network
configuration
The available data were divided into training (50% of data),

testing (30% of data) and validation (20% of data), with the

training and testing files comprising six inputs and two outputs,

and the validation file comprising only the input parameters

that were not used for the training and testing processes. The

data were partitioned as per the indicated percentages to

prepare separate data sets for training, testing and validation

processes of the ANN models. However, the percentage of data

used for partitioning is based on the concept that major share of

it should be used for training processes followed by testing and

validation processes. The data were further shuffled within the

spreadsheet and 20 data sets were prepared for analysis to

nullify the presence of any existing trend and inherent

properties within the data (Sarangi and Bhattacharya, 2005;

Zhang and Govindaraju, 2003; Patel et al., 2002).

Sensitivity analysis was done to determine the optimum

network configuration for BPNN and GRNN by varying two

network parameters, learning rate and number of hidden

neurons that minimized the error of estimation. Learning rate

indicates the rate of change of connection weights during

training. A high learning rate causes oscillation of the

connection weights resulting in large generalization error,

while a low learning rate results in a significant increase in

training time. It was observed that, with use of more neurons

(>20) in hidden layer of BPNN, the network becomes over

fitted, in which case it is capable of fitting the training data

very well but incapable of generalizing for unknown inputs,

i.e. out-of-sample data. Also, a large number of hidden

neurons significantly increase the network training time. A

small number of hidden units results in under fitting due to the

lack of enough processing units to map the input/output

relationship. Sensitivity analysis was also done to determine

the optimum value of tolerance and receptive field for the

RBFNN. Also, for each iteration, the sum of squared error from

the network was computed. When the error became lower

than a predefined tolerance, the training was stopped. At this

stage, the numbers of neurons added to the hidden layer

represented the number of hidden neurons required. If the

sum of squared error was above the tolerance then the input

pattern with largest error was identified and added to the

hidden layer. This process was continued till the network error

was minimum and within the tolerance limit. It was also

observed that with the increase in the number of hidden

neurons the computational time increased. Keeping this in

view, the trial and error approach was employed in assigning

the number of neurons in RBFNN. It was revealed that, with

the change of receptive field from 5 to 35 with an increment of

5, keeping the tolerance constant at 5, the number of neurons

in hidden layer increased and the statistical parameters

(coefficient of determination (R2) and model efficiency (E))

improved, indicating better network performance. But, with

further increase in receptive field (>15), there was no

improvement in statistical parameters (R2, E). In this study,

receptive field of 15 with tolerance constant of 10 leading to 25

numbers of neurons in the hidden layer was found optimal

(RMSE = 0.012) for the operation of RBFNN. The number of

neurons of the hidden layer in BPNN, GRNN and RBFNN

models and the optimal nodes were selected based on the



a g r i c u l t u r a l w a t e r m a n a g e m e n t 8 4 ( 2 0 0 6 ) 2 4 0 – 2 4 8 245

Table 2 – Summary of input parameters of SALTMOD
(Singh et al., 2002b)

Input parameters Parameter values

1. Soil properties

Fraction of irrigation or rain

water stored in root zone

0.65

Total porosity of root zone 0.60

Total porosity of transition zone 0.45

Total porosity of aquifer (assumed) 0.35

Drainable porosity of root zone 0.05

Drainable porosity of transition zone 0.08

Drainable porosity of aquifer 0.25

Leaching efficiency of root zone

(calibrated)

0.60

Leaching efficiency of transition

zone (assumed)

0.80

Leaching efficiency of aquifer

(assumed)

1.00

2. Water balance components

Irrigation in the season 1.25

Rainfall in the season 0.04

Evapotranspiration in the season 0.76

Incoming groundwater flow through

aquifer during the season

0.0

Outgoing groundwater flow through

aquifer during the season

0.0

Surface runoff in the season (calibrated) 0.35

3. Drainage criteria and system parameters

Root zone thickness (m) 0.30

Depth of subsurface drains (m) 1.00

Thickness of transition zone between

root zone and aquifer (m)

1.60

Thickness of aquifer, assumed (m) 5.00

Ratio of drain discharge and height of

the water table above drain (m/(d m))

0.0011–0.015

Rate of drain discharge and squared

height of the water table above

drain (m/(d m2))

0.00015–0.002

Drainage reduction factor in the season 0.2

4. Initial and boundary conditions

Depth of the water table in the

beginning of the season

0.30

Initial salt concentration of soil moisture

in root zone at field saturation (dS/m)

35.0

Initial salt concentration of the soil

moisture in transition zone (dS/m)

40.0

Average salt concentration of incoming

groundwater (dS/m)

50.0

Average salt concentration of incoming

Irrigation water (dS/m)

1.5

m: meter; d: days; dS: deci-siemens.

Fig. 2 – The RMSE of BPNN, GRNN and RBFNN models

adopted for simulating the salinity of subsurface

drained rice fields.
RMSE of the learning results (Fig. 2). It is seen from Fig. 2 that

the RMSE was lowest for the BPNN model (0.0045) for 12 hidden

layered PEs than the GRNN (0.01) and the RBFNN (0.012) with 25

layered PEs for modeling the drainage effluent salinity for both

the spacing. Finally, the BPNN model with the optimal

architecture (1 input layer with 6 PEs, 1 hidden layer with 12

hidden neurons and 1 output layer with 2 PEs) resulted in the

statistical parameters (R2, E) significantly higher than the

RBFNN and GRNN algorithms. Also, the operation time of the

RBFNN was more than BPNN due to more number of neurons

in the hidden layer. Similarly, it was observed by comparing

the RMSE of BPNN, GRNN and tolerance value of RBFNN that

the prediction error of BPNN in simulating the root zone depth

soil salinity was the lowest (0.065). In this study, the learning

rate was varied from 0.01 to 0.09, hidden neurons varied from

10 to 25 and receptive field varied from 5 to 35. The low ranges

of learning rate were chosen because high fluctuations in error

were observed at higher learning rates.

The ANNs used in this study were diverse in their

structures, network algorithms and applicability to specific

field problems. Keeping this in view, the sensitivity of different

ANN model training parameters were meticulously adopted to

select the optimal architecture for these three ANNs. It was

revealed that, the BPNN model performed better than the rest,

which can be attributed to its nonlinear pattern recognition

capability with specified learning rules and activation transfer

functions applied to the data sets of subsurface drained rice

fields. Also, the experimental data of rabi season exhibited

unexplained variations between the climatic parameters, soil

moisture regimes, drainage spacings, drained effluent salinity

and quantity and salinity variations in root zone depths.

Therefore, the smaller data sizes coupled with inherent

variability could be the reason for better training of the BPNN

model over the RBFNN and GRNN model algorithms.

2.3.5. SALTMOD simulations
SALTMOD is a simulation model, which predicts root zone soil

salinity, drainage water quality and water table depth in

agricultural land under different geo-hydrological conditions

and varying water management scenarios. The model runs

with hydrologic data, soil strata information, water balance

components, drainage criteria and system parameters and
initial and boundary conditions as listed in Table 2 and

detailed in Singh et al. (2002b). The technical terms used in

Table 2 for SALTMOD model calibration are also discussed in

Singh et al. (2002b). The model assumed uniform distribution

of the cropping, irrigation and drainage characteristics over

the 4.0 ha experimental site and uses Hooghoudt’s steady

state formula to obtain the flow components from above the

drain and from below the drain when the water table is below

the soil surface. The minimum and maximum time step of

computations was 1 and 12 months, respectively. The SALT-

MOD was calibrated and validated for the experimental site for
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which the ANN models were developed in this study. The

SALTMOD assumed the solute movement to take place as

mass flow and the location of the subsurface drain to be

anywhere in the transition zone. The overall functioning of the

model was based on the principle of mass conservation.

However, the ANN models are based on the observed data of

the experimental site only without any detailed physical

process involved.

2.3.6. Evaluation of the ANN models
All the three ANN models were run with the selected network

architectures (Fig. 2) using the independent training and

testing data sets. Then the trained model was validated with

the unexposed data followed by estimation of R2 and E, using

the relation:

E ¼ 1�
Pn

i¼1ðpi � oiÞ2Pn
i¼1ðoi � oÞ2

(3)

where n, total number of observations; oi, ith observed value; o,

mean of observed values and pi, ith predicted value. The best

model was selected based on the R2 and E value approaching

1.0 (James and Burgess, 1982).
Fig. 3 – The observed and predicted drainage effluent

salinity using back propagation neural network (BPNN)

model (rabi season (January to May) of each year).
3. Results and discussions

The results of the ANN models were compared with the

SALTMOD results as presented in Singh et al. (2002b). The

SALTMOD and ANN models were simulated using the

available data of the same study area.

3.1. Performance of ANN models

Based on the statistical parameters (R2, E) as discussed, the

BPNN neural network with 12 neurons in the hidden layer and a

learning rate of 0.02 was found optimum for simulation of

salinity of root zone depth soil and drainage effluent. It was also

observed that the change in the epoch numbers for normalized

cumulative delta learning rule in BPNN did not affect the

prediction accuracy significantly. The epoch is the number of

sets of training data sets presented to the learning cycles during

weight updates. The variation of epoch from 4 to 16 tried for

training the BPNN model did not yield any significant variation

of the RMSE value. Therefore, the developed BPNN model was

validated using the model efficiency factor E and R2 of observed

and model predicted values (Fig. 3). It was observed from the

figure that the BPNN model performed well for both the 35 and

55 m drain spacing with R2 and E values approaching 1.

However, the BPNN performed poorly for predicting the root

zonesoil salinity (R2 = 0.45;E = 0.4). This may be attributedto the

improper representation of the salt balance in soil profiles by

the neural network approach.

3.2. Comparison of the SALTMOD and BPNN models

3.2.1. Subsurface drainage water quality
The observed and predicted salinity of subsurface drainage

water from the lateral drains of 35 and 55 m spacing for 4 years

using SALTMOD and BPNN models are presented in Fig. 4. It
was observed that for SALTMOD predictions, the deviation

ranged from 21 to 27% in 35 m spacing and 1.5 to 25% in 55 m

spacing. While, the BPNN model predictions were more close

to the observed values with variation of 5–15% in 35 m spacing

and 2–12% in 55 m spacing. Thus, the BPNN model performed

better than the SALTMOD in predicting the salinity of the

drainage effluent. Besides, it was observed that the drainage

rate had increased significantly by over 20 and 10% in the 35

and 55 m drain spacing areas, respectively, after 2 years of

operation of subsurface drainage system. In the same study, it

was also observed that the improvement in soil physical

condition was faster in 35 m spacing as compared to the 55 m

spacing. The data presented in Fig. 4 indicated that salt

concentrations in effluents and drainage rate were always

much higher in 35 m spacing as compared to 55 m spacing.

This signified the higher pace of reclamation with 35 m drain

spacing. Application of SALTMOD and BPNN models revealed

that the land with 35 and 55 m drain spacing for the existing

agro-climatic condition might be reclaimed for rice–rice crop

rotation within 4–6 years, respectively. This inference drawn

from the simulation is in good agreement with the finding

based on field monitoring.
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Fig. 5 – Comparison of seasonal (January to May) prediction

of root zone salinity (0–30 cm) using BPNN and SALTMOD

models.

Fig. 4 – Comparison of seasonal (January to May) prediction

of drainage effluent using BPNN and SALTMOD models.
3.2.2. Root zone soil salinity
The results of simulation of the root zone salinity by SALTMOD,

using the parameters listed in Table 2 together with the

observed data for 4 years (i.e. from the year 1998 to 2001) for the

season 1 are presented and compared with the BPNN model

(Fig. 5). The results indicate that the SALTMOD performed well

and the deviation between the model predicted and the

observed root zone salinity varied from 5.3 to 8.9% in 35 m

drain spacing and from 2.6 to 15.3% in 55 m drain spacing. The

model overestimated the root zone salinity in both 35 and 55 m

drain spacing. However, just after 1 year of operation of the

subsurface drainage system, the model under-estimated the

root zone salinity in 55 m drain spacing. The simulated values of

root zone salinity stabilized in a period of 6 years. Therefore, the

predictionsmadebythemodel suggest that the landwith35and

55 m drain spacing, for existing soil, water and climatic

conditions, may be reclaimed for rice–rice cultivation within

4–6 years. The data presented by Singh et al. (2002b) suggest that

therewas faster removal of salts in 35 m spacing as compared to

55 m spacing. The same study further concluded that coastal

clay soil with given initial conditions would be reclaimed in 3–4

and 6–7 years with 35 and 55 m drain spacing, respectively,

provided no additional salts are added to the top 1 m depth of

the soil profile from external sources. The results of simulation

by SALTMOD are in good agreement with the field estimated

values of soil salinity in the root zone as reported by Singh et al.
(2002b). However, the BPNN failed to correctly predict the root

zone depth salinity and the deviation varied from 45 to 60% with

very low R2 (0.45) and model efficiency (E = 0.4). The failure of

BPNN can be attributed to lack of specific model algorithm

within the ANN to account for the salt balance in the soil profile.
4. Conclusions

This study was done to investigate the applicability of ANN

approaches in modeling the root zone soil salinity and salinity

of drainage effluent from subsurface drained rice fields in the

coastal clay soils of Andhra Pradesh, India. The input

parameters and the ANN model architecture was decided

based on use of MARS tool and trial and error approach leading

to optimal error statistics. The results of the predictability of

best ANN model (BPNN model) were then compared with

those of SALTMOD model to evaluate the model perfor-

mances. Performances of both the models were evaluated by

comparing the model generated predictions with the recorded

data of the study area. It was concluded that, BPNN model

performed better for prediction of the drainage effluent

salinity for both the drain spacings but failed to predict the

root zone soil salinity properly. Therefore, BPNN modeling

approach detailed in this study can be applied to similar

subsurface drained fields to predict the salinity of the drainage
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effluent and the reclamation period with acceptable accuracy

using minimal input data. The SALTMOD requires some

specific field observations for model calibration, which can be

avoided with the ANN approaches. The finding of Singh et al.

(2002b) regarding the SALTMOD prediction of drainage

effluent salinity to be independent of the root zone soil

salinity was confirmed in this study as the BPNN model

predictions for both salinities were divergent. The ANN

approaches are simpler, relatively faster in model develop-

ment and simulation and can operate on minimal data

structure in comparison to conceptual model SALTMOD. Also,

consideration of the system based parameters in preparation

of the PEs of ANN input layers resulted in elevating the

complete ‘‘black-box’’ approximation of ANN towards ‘‘gray

box’’ model representations. However, SALTMOD may be

preferred over ANN models for detailed salt balance compo-

nent estimation in subsurface drained fields.
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