ANALYTICAL CHEMISTRY

Vol. 28 No.3 (1956), pp.350-356

DUBOIS (M) & OTHERS

Colorimetric method for determination of sugars and related substances.

No. ZZ 068030
Analytical Chemistry.

Volume 28 Part

Article

University Librarian
Ahata Phule Agricultural University
AHURI. PIN-413 722
ist.: Ahmednagar
maharashtra.

I have not previously been supplied with a copy of the above work by any librarian. I understand that if a copy is supplied to me in compliance with the above request, it will only be used for research or private study.

Signature
Date 24-11-1981

Please Send:

☑ Photographic Copy
☐ Microfilm
☐ Microfiche
☐ If microfiche unacceptable write X
☐ If not available at S.L.L.D. do not try elsewhere

Returned check ref:

Returned for more copies

S.L.L.D. conclusion

Try

Returned check ref:

Returned for more copies
Simple sugars, oligosaccharides, polysaccharides, and their derivatives, including the methyl ethers with free or potentially free reducing groups, give an orange-yellow color when treated with phenol and concentrated sulfuric acid. The reaction is sensitive and the color is stable. By use of this phenol-sulfuric acid reaction, a method has been developed to determine submicro amounts of sugars and related substances. In conjunction with paper partition chromatography the method is useful for the determination of the composition of polysaccharides and their methyl derivatives.

Colorimetric tests for reducing sugars and polysaccharides have been known for a considerable time. The reagents such as 1-naphthol (33) for carbohydrates in general; metaperiodate and uronic acids (37, 38, 40); naphthoresorcinol for uronic acids (61); and resorcinol (35), naphthoresorcinol (59), and resorcinol dimethylamino acid (31) for ketoses are all-known examples of colorimetric tests that may be carried out in acid solution. Such tests as these and modifications of them using aniline and phenols (4, 33, 38) have recently gained added importance since the extensive development of minute amounts of sugars and their derivatives (1, 4, 11, 12, 17, 18, 21–23, 26, 36, 39, 47). Polysaccharides with a reducing group may be detected by the Tollens reagent (30, 32), perhaps one of the best reagents in the field of chromatography. Reducing sugars are also detectable by picric acid (7, 17), 3,4-dinitrobenzoic acid (6), 3,5-dinitro-benzoic acid (7, 36, 38), o-dinitrobenzene (17, 40), and methylene blue (44), while diacerein is said to be specific for sucrose as well as oligosaccharides and polysaccharides containing the glucose residue (42).

Volumetric procedures involving the use of potassium ferriyanide (19), ceric sulfate (55), copper sulfate (36, 44), and sodium hypobromite (30) are applicable to the determination of small amounts of reducing sugars after separation by partition chromatography. However, experience shows that these methods require considerable skill and are time-consuming and sensitive to slight variations in the conditions. The anthrone (18, 11, 28, 34, 35, 53) and 1-naphtholsulfonate (10) reagents are excellent for standard sugar solutions (31), but, when applied to the analysis of sugars separated by partition chromatography, the presence of only traces of residual solvent developer may render them useless. Most sugars can be separated on filter paper by a phenol-water solvent (39), but they cannot then be determined by the anthrone reagent because residual phenol, held tenaciously in the paper, interferes with the green color produced by the anthrone reagent. Moreover, the anthrone reagent is expensive and solutions of it in sulfuric acid are not stable (50, 34). The anthrone method also suffers from the disadvantage that, while it is satisfactory for free sugars and their glycosides, it is of limited use for methylated sugars and the pentitides. Although butanoyl-propanoyl acid-water is an excellent solvent for separating the disaccharides (4), the residual propanoyl acid interferes with the 1-naphtholsulfonate method. Aniline phthalate (38) and aniline trichloroacetate (17) have been utilized for the colorimetric determination of sugars and their derivatives (3, 35); these reagents, however, are unsatisfactory for ketoses.

Phenol in the presence of sulfuric acid can be used for the quantitative colorimetric microdetermination of sugars and their methyl derivatives, oligosaccharides, and polysaccharides (13). This method is particularly useful for the determination of small quantities of sugars separated with solvents which are volatile—e.g., butanol-ethanol-water (39), ethyl acetate-acetic acid-water (26), or methyl ethyl ketone-water (4, 39). The method is simple, rapid, and sensitive, and gives reproducible results. The reagent is inexpensive and stable, and a given solution requires only one standard curve for each sugar. The color produced is permanent and it is unnecessary to pay special attention to the control of the conditions.

Determining of Concentration of Pure Sugar Solutions

Reagents and Apparatus. Sulfuric acid, reagent grade 95.5%, conforming to ACS specifications, specific gravity 1.84.

Phenol, 80% by weight, prepared by adding 20 grams of glacial distilled water to 80 grams of redistilled reagent grade phenol. This mixture forms a water-white liquid that is readily pipetted.

Certain preparations have been known to remain water-white after a year's storage, while others turn a pale yellow in 3 or 4 months. The pale yellow color that sometimes develops does not interfere in the determination, inasmuch as a blank is included.

Coleman Junior, Evelyn, Klett-Summerson, or Beckman Model DU spectrophotometers. All were used with satisfactory results in this investigation.

Table 1. Standard curves

<table>
<thead>
<tr>
<th>Sugar</th>
<th>Phenol mg.</th>
<th>Color Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Fucose</td>
<td>485 mg.</td>
<td>40 mg.</td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>480 mg.</td>
<td>17 mg.</td>
</tr>
<tr>
<td>n-Glucose</td>
<td>490 mg.</td>
<td>100 mg.</td>
</tr>
<tr>
<td>n-Galactose</td>
<td>490 mg.</td>
<td>40 mg.</td>
</tr>
<tr>
<td>n-Galacturonic acid</td>
<td>485 mg.</td>
<td>17 mg.</td>
</tr>
<tr>
<td>D-Glucuronic acid</td>
<td>485 mg.</td>
<td>17 mg.</td>
</tr>
<tr>
<td>D-Xylose</td>
<td>480 mg.</td>
<td>17 mg.</td>
</tr>
<tr>
<td>D-Mannose</td>
<td>490 mg.</td>
<td>17 mg.</td>
</tr>
<tr>
<td>D-Galactose</td>
<td>490 mg.</td>
<td>40 mg.</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>485 mg.</td>
<td>17 mg.</td>
</tr>
<tr>
<td>D-Mannose</td>
<td>490 mg.</td>
<td>17 mg.</td>
</tr>
<tr>
<td>D-Glucuronic acid</td>
<td>485 mg.</td>
<td>17 mg.</td>
</tr>
</tbody>
</table>

Figure 1. Standard curves

1. xylose, Coleman Jr., 485 mg., 17 mg. of phenol
2. Mannose, Beckman, 485 mg., 17 mg. of phenol
3. Mannose, Evelyn, 485 mg., 17 mg. of phenol
4. Galacturonic acid, Coleman Jr., 485 mg., 17 mg. of phenol
5. Glucose, Coleman Jr., 485 mg., 17 mg. of phenol
6. Mannose, Evelyn, 485 mg., 17 mg. of phenol
7. Galactose, Coleman Jr., 485 mg., 17 mg. of phenol
8. Mannose, Evelyn, 485 mg., 17 mg. of phenol
9. Glucose, Coleman Jr., 485 mg., 17 mg. of phenol
10. Glucose, Beckman Model DU, 485 mg., 100 mg. of phenol

Colorimetric Method for Determination of Sugars and Related Substances

MICHEL DUBOIS, A. GILLES, J. K. HAMILTON, P. A. REBERS, and FRED SMITH

Division of Biochemistry, University of Minnesota, St. Paul, Minn.
VOLUME 28, NO. 3, MARCH 1956

order to obtain good mixing. The tubes are allowed to stand 10 minutes, then they are shaken and placed for 10 to 20 minutes in a water bath at 25° to 30° C. before readings are taken. The color is stable for several hours and readings may be made later if necessary. The absorbance of the characteristic yellow-orange color is measured at 490 μm for hexoses and 460 μm for pentoses and uronic acids. Blanks are prepared by substituting distilled water for the sugar solution. The amount of sugar may then be determined by reference to a standard curve previously constructed for the particular sugar under examination. All solutions are prepared in triplicate to minimize errors resulting from accidental contamination with cellulose lint.

If it is desired to avoid the use of micropipets, the phenol may be added as a 5% solution in water. The amounts of reactants are then: 1 or 2 ml. of sugar solution, 1 ml. of 5% phenol in water, and 5 ml. of concentrated sulfuric acid. All other steps are the same as above.

Standard Curves. A series of typical standard curves is shown in Figures 1 and 2. Included in these figures are examples of some of the sugars usually encountered in carbohydrate studies—namely, pentose, deoxyribose, rhamnose, xylose, arabinose, and 2-deoxy-α-ribose. The absorbance of the characteristic yellow-orange color is measured at 490 μm for hexoses and 460 μm for pentoses and uronic acids. Blanks are prepared by substituting distilled water for the sugar solution. The amount of sugar may then be determined by reference to a standard curve previously constructed for the particular sugar under examination. All solutions are prepared in triplicate to minimize errors resulting from accidental contamination with cellulose lint.

If it is desired to avoid the use of micropipets, the phenol may be added as a 5% solution in water. The amounts of reactants are then: 1 or 2 ml. of sugar solution, 1 ml. of 5% phenol in water, and 5 ml. of concentrated sulfuric acid. All other steps are the same as above.

Standard Curves. A series of typical standard curves is shown in Figures 1 and 2. Included in these figures are examples of some of the sugars usually encountered in carbohydrate studies—namely, pentose, deoxyribose, rhamnose, xylose, arabinose, and 2-deoxy-α-ribose. The absorbance of the characteristic yellow-orange color is measured at 490 μm for hexoses and 460 μm for pentoses and uronic acids. Blanks are prepared by substituting distilled water for the sugar solution. The amount of sugar may then be determined by reference to a standard curve previously constructed for the particular sugar under examination. All solutions are prepared in triplicate to minimize errors resulting from accidental contamination with cellulose lint.

If it is desired to avoid the use of micropipets, the phenol may be added as a 5% solution in water. The amounts of reactants are then: 1 or 2 ml. of sugar solution, 1 ml. of 5% phenol in water, and 5 ml. of concentrated sulfuric acid. All other steps are the same as above.

Standard Curves. A series of typical standard curves is shown in Figures 1 and 2. Included in these figures are examples of some of the sugars usually encountered in carbohydrate studies—namely, pentose, deoxyribose, rhamnose, xylose, arabinose, and 2-deoxy-α-ribose. The absorbance of the characteristic yellow-orange color is measured at 490 μm for hexoses and 460 μm for pentoses and uronic acids. Blanks are prepared by substituting distilled water for the sugar solution. The amount of sugar may then be determined by reference to a standard curve previously constructed for the particular sugar under examination. All solutions are prepared in triplicate to minimize errors resulting from accidental contamination with cellulose lint.

If it is desired to avoid the use of micropipets, the phenol may be added as a 5% solution in water. The amounts of reactants are then: 1 or 2 ml. of sugar solution, 1 ml. of 5% phenol in water, and 5 ml. of concentrated sulfuric acid. All other steps are the same as above.

Figure 2. Standard curves

1. Sucrose, Beckman Model DU, 400 μm, 100 mg. of phenol
2. Potatoes, Beckman Model DU, 400 μm, 100 mg. of phenol
3. Dextrin from Canavalina, chromatographic grade, NRRL B-412
4. n-Glucose, Evelyn, Blue No. 460, 80 μm of phenol
5. α-Rhamnose, Coleman Jr., 460 μm, 40 μg. of phenol
6. Raffinose, Beckman Model DU, 460 μm, 100 mg. of phenol
7. n-Fructose, Beckman Model DU, 400 μm, 200 μg. of phenol
8. 2-Deoxy-α-ribose, Coleman Jr., 490 μm, 89 μg. of phenol

Figure 3. Absorption curves

Fast-delivery 5-ml. pipet, to deliver 5 ml of concentrated sulfuric acid in 10 to 20 seconds. This is easily prepared by cutting a portion of the tip of a standard 5-ml. pipet. Series of matched colorimetric tubes, internal diameter between 16 and 20 mm. This diameter will allow good mixing without dissipating the heat too rapidly. A high maximum temperature is desired because it increases the sensitivity of the reagent. Series of micropipets delivering 0.02, 0.05, and 0.1 ml. The type described by Pregl (44) is satisfactory.

Procedure. Two microliters of sugar solution containing between 10 and 70 μg of sugar is pipetted into a colorimetric tube, and 0.05 ml of 80% phenol (adjust amount according to Figures 9 and 10) is added. Then 5 ml of concentrated sulfuric acid is added rapidly, the stream of acid being directed against the liquid surface rather than against the side of the test tube in order to obtain good mixing. The tubes are allowed to stand 10 minutes, then they are shaken and placed for 10 to 20 minutes in a water bath at 25° to 30° C. before readings are taken. The color is stable for several hours and readings may be made later if necessary. The absorbance of the characteristic yellow-orange color is measured at 490 μm for hexoses and 460 μm for pentoses and uronic acids. Blanks are prepared by substituting distilled water for the sugar solution. The amount of sugar may then be determined by reference to a standard curve previously constructed for the particular sugar under examination. All solutions are prepared in triplicate to minimize errors resulting from accidental contamination with cellulose lint.

If it is desired to avoid the use of micropipets, the phenol may be added as a 5% solution in water. The amounts of reactants are then: 1 or 2 ml. of sugar solution, 1 ml. of 5% phenol in water, and 5 ml. of concentrated sulfuric acid. All other steps are the same as above.

Standard Curves. A series of typical standard curves is shown in Figures 1 and 2. Included in these figures are examples of some of the sugars usually encountered in carbohydrate studies—namely, pentose, deoxyribose, rhamnose, xylose, arabinose, and 2-deoxy-α-ribose. Certain methylated derivatives. In order to test the method, the experiments were repeated on different days and by different operators. In all cases the variations between experiments and between operators were no more than 0.01 to 0.02 unit in absorbance, which was the same order of magnitude as the variations between the triplicate samples.

The experimental data for the various carbohydrates, except 2-deoxyribose, given in Figures 1 and 2 may be tabulated by calculating the value of absorbance index in the equation

\[A_s = \frac{a}{b} \]

where \(T \) is per cent transmittance, \(b \) is the length of light path, expressed in centimeters, and \(c \) is the concentration, in micrograms of sugar per milliliter of final volume.

Discussion of Results. Absorption Curves. The curves obtained by plotting absorbance vs. wave length (Beckman Model
DU) are shown in Figures 3 to 8; the absorption curve is characteristic for each of the sugars described (9, 25). The pentoses, methylpentoses, and uronic acids have an absorption maximum at 485 μm, whereas hexoses and their methylated derivatives have an absorption maximum at 435 to 450 μm. Certain of the methylated pentose sugars and their methyl glycosides show selective absorption at about 415 to 420 μm (Figure 8) and for this reason the colorimetric determination of 2,3,5-tri-o-methyl-L-arabinose and its methyl glycoside is best carried out at 415 μm.

The α-xylene and furfural curves are very similar. Assuming that the amount of color is proportional to the amount of furfural present or produced, the conversion of α-xylene to furfural under the conditions of the test is 93% of theory.

Calculation of conversion of α-xylene to furfural

\[P = \frac{1.50 \times 100}{96 \times 100} = 92.5\% \]

Table I. Absorption Data for Certain Carbohydrates Determined by Phenol-Sulfuric Acid Reagent

<table>
<thead>
<tr>
<th>Compound</th>
<th>Wt., Microgram</th>
<th>Light Wave Length, μm</th>
<th>Absorbance</th>
<th>Extinction at 415 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Fructose</td>
<td>37.4</td>
<td>6.64</td>
<td>1.27</td>
<td>96</td>
</tr>
<tr>
<td>2,3-Di-o-methyl-D-glucose</td>
<td>2.3</td>
<td>6.64</td>
<td>1.27</td>
<td>96</td>
</tr>
<tr>
<td>2,3-Di-o-methyl-L-arabinose</td>
<td>2.3</td>
<td>6.64</td>
<td>1.27</td>
<td>96</td>
</tr>
<tr>
<td>2,3,4-Tri-o-methyl-α-glucose</td>
<td>5.1</td>
<td>6.64</td>
<td>1.27</td>
<td>96</td>
</tr>
<tr>
<td>2,3,4,6-Tetra-o-methyl-glucose</td>
<td>5.1</td>
<td>6.64</td>
<td>1.27</td>
<td>96</td>
</tr>
</tbody>
</table>

* Beckman Model DU; C, Coleman Junior; K, Klett-summerson.
* Actual weight of phenol. To find weight of 80% solution, divide by 0.8.
Calculation of final volume

2 ml. water 2
5 ml. sulfuric acid \(\times 1.84 \) 9.20
Total wt. 11.20 grams

Conc. of sulfuric acid after mixing \(9.20 \times 0.95 = 78\% \)
Density of 78\% sulfuric acid (30\° C.) 1.7043
Volume of mixture \(\frac{17.90}{78\%} = 6.57 \text{ ml.} \)

The addition of small amount of phenol was considered to have a negligible effect on the density of the solution; hence, 0.1 ml. of 80\% phenol would increase the volume by 0.06 ml.

\[\begin{align*}
2 \text{ ml. water} & \quad 2 \\
5 \text{ ml. sulfuric acid} & \quad 5 \\
\text{Total wt.} & \quad 11.20 \text{ grams}
\end{align*} \]

\[\text{Conc. of sulfuric acid after mixing} \quad 9.20 \times 0.95 = 78\% \]

Density at 20\° C. 1.628
Volume of mixture 12.20 \(\text{ml.} \) 7.48 ml.

Table II. Relationship between Index of Absorbance and Sugar Concentration as Determined by Different Instruments

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Band Width, Mm.</th>
<th>Light Path, Cm.</th>
<th>Absorbance, (\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beckman</td>
<td>0.5</td>
<td>1.00</td>
<td>0.01 (\alpha = 0.0035)</td>
</tr>
<tr>
<td>Model DU</td>
<td>0.5</td>
<td>1.00</td>
<td>0.02 (\alpha = 0.0053)</td>
</tr>
<tr>
<td>Coleman Jr.</td>
<td>0.5</td>
<td>1.00</td>
<td>0.03 (\alpha = 0.0082)</td>
</tr>
<tr>
<td>Evelyn</td>
<td>0.5</td>
<td>1.00</td>
<td>0.04 (\alpha = 0.0112)</td>
</tr>
</tbody>
</table>

Effect of Variable Amounts of Phenol. The intensity of the color is a function of the amount of phenol added. As the amount of phenol is increased, the absorbance increases to a maximum and then usually falls off (Figures 9 and 10). When a paper chromatographic separation has been effected using phenol as a solvent, it will be found impractical to remove all of the phenol developer by air drying. This is not essential, though, because the curve of absorbance vs. amount of phenol is relatively flat after the maximum color intensity has been reached. Reproducible results can be obtained by operating at either side of the peak or at the peak as long as the amount of phenol added is controlled. This could conceivably form the basis for the analysis of mixtures of sugars—for instance, of D-mannose and D-glucose—by making two series of experiments, one at low and one at high phenol concentrations. The difference in readings is not large enough by itself except for rather crude estimations, but in combination with the variation in wave length of absorption maxima peaks between pentoses or uronic acids and hexoses, a satisfactory analysis might be devised.

A procedure using a somewhat similar idea, the rate of color development between sugars and the anthrone reagent, has been reported by Koehler (48).

Figure 6. Absorption curves

Figure 7. Absorption curves

Figure 8. Absorption curves

Effect of Band Width. The absorbance, as is generally true in colorimetric determinations, is a function of the length of light path as well as the band width of the light source. As the band width becomes narrower, the observed absorbance becomes greater. If the values of the constant \(\alpha \) are calculated from the equation \(A = \alpha b \), the effect of the band width becomes apparent (Table II).
The higher the value of a, the more sensitive is the instrument. On this basis, the Beckman was the most sensitive instrument used; the others, however, perform well enough for routine analysis.

In the case of the Evelyn and the Coleman colorimeters, the value of a is not constant. This means that the plot of concentration vs. absorbance is not linear at the higher concentrations; however, it is very nearly linear at lower concentrations. The linearity of the plot of absorbance vs. concentrations is extended to higher regions of concentration by operating at narrower band widths. The points obtained in the nonlinear region with the colorimeters passing wider bands are, nevertheless, useless (Table III).

ACCURACY OF METHOD. Under the proper conditions, the method can be expected to be accurate to within ±2%. This figure was obtained by plotting the results obtained by use of the Beckman Model DU spectrophotometer and comparing the amount of sugar actually present with that indicated by the plot. As mentioned previously, the narrow band width of the Beckman spectrophotometer makes it possible to extend the linearity of the standard curve. The percentage error is shown in Table III.

Table III. Accuracy of Phenol-Sulfuric Acid Method for Sugar Determination

<table>
<thead>
<tr>
<th>Compound</th>
<th>Taken (%)</th>
<th>Found (%)</th>
<th>Error (%)</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannose</td>
<td>82</td>
<td>83</td>
<td>1.2</td>
<td>0.01</td>
</tr>
<tr>
<td>Xylose</td>
<td>80</td>
<td>79</td>
<td>-2.5</td>
<td>0.055</td>
</tr>
<tr>
<td>Galactose</td>
<td>80</td>
<td>78.5</td>
<td>1.5</td>
<td>0.225</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>79.5</td>
<td>79.3</td>
<td>0.7</td>
<td>0.325</td>
</tr>
<tr>
<td>20</td>
<td>21.5</td>
<td>3.5</td>
<td>0.5</td>
<td>0.173</td>
</tr>
</tbody>
</table>

Conclusions. The phenol-sulfuric acid method can be used to give reliable estimations of the sugar content of pure solutions. The colors produced are unusually stable, and possess a definite absorption peak. The amount of color produced at a constant phenol concentration is proportional to the amount of sugar present. The standard curves obtained by plotting the sugar concentration vs. the absorbance can be readily reproduced and, because of this, only one standard curve need be prepared for a given sugar. Furthermore, the reagents are inexpensive, stable, and readily available.

QUANTITATIVE ANALYSIS OF SUGARS BY PAPER CHROMATOGRAPHY

The application of qualitative paper chromatography to the separation of sugar mixtures has been extended to the field of quantitative analysis. Any sugars that can be separated by the technique of paper chromatography can be determined quantitatively by the colorimetric technique just described after the technique of paper chromatography can be determined.

For example, the determination of a pentosan. The further study of this carbohydrate material will form the subject of another communication.

Washing of Paper. The following experiment illustrates how the soluble carbohydrate fraction present in filter paper may be reduced by washing. This fraction cannot be entirely washed out (24), and seems to increase after the washed paper is allowed to dry (25). Other work (26) in this laboratory has shown that the soluble carbohydrate fraction of filter paper is of the nature of a pentosan. The further study of this carbohydrate material will form the subject of another communication.
move in discrete bands, and how much margin should be allowed along the edges. The larger the amount of sugars which can be added, the less significance the blank will have. In most cases about 600 to 1000 γ of sugar should be added. Dinsler and others (13) recommend that another paper be prepared to counteract the variations in delivery that may occur with micropipets. To this paper they add standard amounts of known sugars, using the same pipet and the same technique. This procedure does not, of course, eliminate the need for a blank determination, because the presence of the soluble carbohydrate fraction in the filter paper will have a relatively greater effect at low sugar concentrations. After the sugars have been added to the paper, the chromatograms are developed for a long enough period so that the sugars to be analyzed are clearly separated. After the chromatogram has been dried in the air, the side marking strips are cut off and sprayed to show the location of the sugars in the center section. The center unprayed portion of the chromatogram is then cut up into sections corresponding to the locations of the sugar. Each section is transferred to Petri dishes, beakers, or other suitable containers that can be covered or closed. The blank paper is cut up to correspond to the area and location of the sugars of the other paper. Twenty milliliters of distilled water is added to each of the Petri dishes, which are then covered blank paper is cut up to correspond to the area and location of the sugars before referring to the standard curve, the center section. The center unsprayed portion of the chromatogram has been dried in the air, the side marking strips are cut off and sprayed with p-anisidine trichloroacetic acid developed for 24 hours by use of phenol saturated with water as the solvent. The paper was removed from the chromatogam in the air and allowed to stand for 30 minutes with occasional shaking. During this time the sugar becomes equally distributed throughout the liquid and solid phases (water and cellulose). The eluate is filtered through glass wool and the concentration of sugars determined as described before, with the important differences that the absorbance of the blank reading is subtracted from that corresponding to the sugar before referring to the standard curve.

Results. Efficiency of Extraction of Sugars from Filter Paper. This is illustrated by two typical experiments:

1. With a micropipet, 0.102 ml. of a solution containing 4.52 mg. of D-fructose was added to a piece of Whatman No. 1 paper (6 × 3 inches). The paper was allowed to dry in the air for 24 hours and then soaked in 20 ml. of distilled water for 0.5 hour to extract the sugar. (In another series of experiments it was found that sugars are extracted from the paper almost immediately.)

2. A similar experiment carried out with p-glucose (400 γ) added to a piece of paper (2 × 2 inches) gave a recovery of 100%. Additional experiments with p-mannose, p-xyllose, and 1-arabinose, and with methylated sugars such as 2,3,4,6-tetra-o-methyl-, 2,3,6-tri-o-methyl-, and 2,3-di-o-methyl-p-glucose with and without solvent migration using phenol-water, butanol-ethanol-water, and methyl ethyl ketone-water aneotrope gave recoveries of 95 to 100%.

Analysis of a Synthetic Mixture of Sugars. (1) A solution containing D-fructose (3.18 mg.) and D-glucose (0.20 mg.) was transferred to a piece of Whatman No. 1 paper (8 × 2 inches) as described previously. The chromatogram was developed for 24 hours by use of phenol saturated with water as the solvent. The paper was removed from the chromatogram in the air and allowed to dry for 24 hours. The marginal strips were cut off and sprayed with p-anisidine trichloroacetic acid reagent (small amounts of phenol do not interfere). After re-assemblying the chromatogram, the best line of demarcation was drawn between the two spots and the sections were cut out (glucose, 6 to 8.5 inches, fructose, 8.5 to 11 inches from the starting line), together with the corresponding blanks as previously described. The pieces of paper containing the two sugars and the two blanks were extracted and filtered. The concent ration of the two sugars was then determined by the phenol-sulfuric acid reagent, reference being made to standard curves for glucose and fructose. The results were as follows:

Glucose Recovery
- Absorbance of the eluate (2 ml. out of 20 ml. removed for test) = 0.32
- Absorbance of blank = 0.10
- Absorbance for glucose = 0.22

Fructose Recovery
- Absorbance of eluate (diluted 2 ml. to 20 ml. of water) = 0.40
- Absorbance of blank = 0.01
- Absorbance for fructose = 0.39

From the standard curve for glucose absorbance, 0.45 = 42.4 γ glucose
Absorbance of 0.22 = 0.22 × 42.4 γ glucose
Total glucose recovered = 0.22 × 42.4 γ glucose = 96 γ glucose
Recovery = 100%. **Fructose Recovery**
- Absorbance of eluate (diluted 2 ml. to 20 ml. of water) = 0.40
- Absorbance of blank = 0.01
- Absorbance for fructose = 0.39

From the standard curve for fructose absorbance, 0.57 = 42.4 γ fructose
Absorbance of 0.39 = 0.39 × 42.4 γ fructose
Recovery = 86%.
(2) For a solution containing D-mannose and D-glucose, the following results were obtained:

<table>
<thead>
<tr>
<th>Solvent developer</th>
<th>D-Mannose added</th>
<th>D-Glucose added</th>
<th>% Recovery</th>
<th>D-Glucose recovered</th>
<th>% Recovery</th>
<th>Glucose in original mixture</th>
<th>%</th>
<th>Glucose calculated from analysis</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-butanol-water</td>
<td>440</td>
<td>440</td>
<td>95</td>
<td>51.5</td>
<td>95</td>
<td>440</td>
<td>95</td>
<td>51.5</td>
<td>95</td>
</tr>
<tr>
<td>Water</td>
<td>440</td>
<td>440</td>
<td>95</td>
<td>51.5</td>
<td>95</td>
<td>440</td>
<td>95</td>
<td>51.5</td>
<td>95</td>
</tr>
<tr>
<td>Ethanol-water</td>
<td>440</td>
<td>440</td>
<td>95</td>
<td>51.5</td>
<td>95</td>
<td>440</td>
<td>95</td>
<td>51.5</td>
<td>95</td>
</tr>
</tbody>
</table>

The close agreement is fortuitous, but numerous experiments with mixtures of methylated and un methylated sugars have shown that recoveries of 100 ± 5% or better are to be expected. In the above experiment the recoveries were not 100% as expected, but it is believed that this is due to the fact that the sugar bands with Whatman No. 3 are less compact than those with Whatman No. 1; for this reason the No. 1 paper is preferred.

Table IV. Wave Lengths Vs Absorbance for Starch

<table>
<thead>
<tr>
<th>Wave Length</th>
<th>410</th>
<th>420</th>
<th>430</th>
<th>440</th>
<th>450</th>
<th>460</th>
<th>470</th>
<th>480</th>
<th>490</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbance</td>
<td>0.21</td>
<td>0.25</td>
<td>0.27</td>
<td>0.28</td>
<td>0.30</td>
<td>0.34</td>
<td>0.32</td>
<td>0.34</td>
<td>0.35</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Conclusions. The phenol-sulfuric acid method can be applied to the analysis of any mixtures of sugars and their methyl derivatives that are amenable to separation by paper chromatography. Thus it has been applied to the analysis of mixtures of methyl sugars separated on paper by butanol-ethanol-water or methyl ethyl ketone-water anisotropes. The method has also proved of value for the analysis of hydrolyzates of oligosaccharides of polysaccharides such as starch (Table IV), glycozen, plant gums, and hemicyclilins (15); and for the determination of the amount of sugar in urine and in blood.

LITERATURE CITED

(17) Ibid., 1950, 1702.
(26) Moren, D., Milne, 37, 204 (1948).
(29) Ibid., 1950.
(38) Nicolau, J., Bull, Soc. chim. belg. 32, 130 (1930).
(42) Summer, R. J., J. Biol. Chem. 42, 238 (1951).
(44) Ibid., 38, 171 (1938).
(45) Tolstukh, P. A., Hops, 41, 1788 (1908).

Received for review June 24, 1955. Accepted December 28, 1955.

Digester and Filter for Preparing Extract Solutions from Solids—Correction

After publication of the article on "Digester and Filter for Preparing Extract Solutions from Solids" [Anal. Chem. 27, 1609 (1955)] attention was called to an article published a short time earlier by M. Potterat and H. Eschmann [Mitt. Lebens., Hg. 45, 229–31 (1954), in which a design for an apparatus having substantially the same features was presented. Since receiving this information the authors have sought to learn how the earlier article escaped notice and found that because of the time factor the publication in which it appeared could not have been available to them when the manuscript was prepared.

G. R. VAN ATTA

Jack Guggolz

Western Utilization Branch
Agricultural Research Service
U. S. Department of Agriculture
Albany 10, Calif.